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11.2. The Laplacian in Polar Coordinates

When a problem has rotational symmetry, it is often convenient to
change from Cartesian to polar coordinates. It is then useful to know
the expression of the Laplacian ∆u = uxx + uyy in polar coordinates.
Recall that

x = r cos θ, y = r sin θ.

Using the chain rule,
ux = urrx + uθθx.

Let us find rx and θx. Implicit functions help simplify the computations
a little bit. Differentiating both sides of

r2 = x2 + y2

with respect to x, we get
2rrx = 2x,

whence rx = x
r
. You can find ry in a similar way.

To compute θx, we can start from the relation

y = r sin θ.

Differentiating both sides with respect to x, we get

0 = rx sin θ + r cos θ · θx,

whence

θx = −rx sin θ

r cos θ
= −rx

r
tan θ = −rx

r
· y

x
.

Substituting here the value of rx we have just found, we get

θx = − y

r2
.

You can find θy in a similar way, starting from the equation x = r cos θ.
Exercise 1. Find ry and θy using the given hints.

Differentiating once again, we can show that

rxx =
y2

r3
, θxx =

2xy

r4
,

and find similar values for ryy, θxx, and θyy.
This will yield the following expressions for uxx and uyy:

uxx =
x2

r2
urr −

2xy

r3
urθ +

y2

r4
uθθ +

y2

r3
ur +

2xy

r4
uθ;

uyy =
y2

r2
urr +

2xy

r3
urθ +

x2

r4
uθθ +

x2

r3
ur −

2xy

r4
uθ.

Exercise 2. Compute rxx, ryy, θxx, θyy, and obtain the above
expressions for uxx and uyy using the chain rule.
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Adding up both expressions, doing a couple of cancellations and
regrouping, we obtain

uxx + uyy = urr +
1

r
ur +

1

r2
uθθ.

This is the desired expression of the Laplacian in polar coordinates.
Sometimes it is convenient to write it in a slightly different way:

∆u = urr +
1

r
ur +

1

r2
uθθ =

1

r
(rur)r +

1

r2
uθθ;(11.1)

for the second expression we combined the first two terms, using the
product rule.

11.3. Separation of Variables

We will solve the Dirichlet problem for the Laplace equation on a circle,
that is, the problem of finding a function that is harmonic inside a circle
and has a prescribed value on the boundary:

∆u = 0 inside the circle;

u = f on the boundary.

Let us call a the radius of the circle. If we put the center of the circle
at the origin and use polar coordinates, we can be more specific:

∆u(r, θ) = 0 for every θ and for r < a; PDE

∆u(a, θ) = f(θ) for every θ, BC

where f(θ) is a specified periodic function with period 2π. (Periodicity
is required because θ represents the polar angle, so θ + 2π and θ are
measures of the same angle.)

Using the expression (11.1) of the Laplacian in polar coordinates,
we can rewrite the problem as

urr +
1

r
ur +

1

r2
uθθ = 0 for every θ and for r < a; PDE

∆u(a, θ) = f(θ) for every θ, BC

Using the method of separation of variables, we will first forget for a
moment all about the boundary condition and seek nontrivial solutions
(eigenfunctions) of the Laplace equation on the circle as a product:

u(r, θ) = R(r)Θ(θ).

Substituting into the Laplace equation, we get

R′′Θ +
1

r
R′Θ +

1

r2
RΘ′′ = 0.
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Multiplying both sides by r2 we can rewrite this as

(r2R′′ + rR′)Θ = −Θ′′R.

Dividing both sides by RΘ, which is assumed to be nonzero, this be-
comes

r2R′′ + rR′

R
= −Θ′′

Θ
.

Now we use an argument you have already heard many times: since
the left-hand side depends only on r, and the right-hand side depends
only on θ, both sides must be constant, call it k:

r2R′′ + rR′

R
= −Θ′′

Θ
= k.(11.2)

The equation for Θ reads

Θ′′ + kΘ = 0,

with the additional conditions that

Θ(2π) = Θ(0), Θ′(2π) = Θ′(0);(11.3)

these conditions arise, again, from the fact that θ represents the polar
angle.

Exercise 3. Prove that under these conditions k cannot be nega-
tive.

If k = 0, we get Θ(θ) = Aθ + B. Condition (11.3) implies A = 0,
so the only solution is Θ = const.

If k > 0, we rewrite k = λ2, just for convenience, and the equation
for Θ becomes

Θ′′ + λ2Θ = 0.

The general solution is

Θ(θ) = A cos λθ + B sin λθ.

These functions have period λ; conditions (11.3) now force λ to be an
integer: λ = n.

Exercise 4. Prove this fact.
So, if we want nonzero solutions, we must have

λ = λn = n2;

these are the eigenvalues of the given problem. We can assume that
n is non-negative, since for negative n’s we get essentially the same
solutions.

Exercise 5. Why?
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Thus, the Θ factor is

Θn(θ) = An cos nθ + Bn sin nθ; n = 0, 1, 2, 3 . . . ,

where An and Bn are arbitrary constants. Notice that for n = 0 we
recover the solution Θ = A0 = const, obtained for the case when k = 0.

Substituting k = λ2 = n2 into (11.2) produces

r2R′′ + rR′

R
= −Θ′′

Θ
= n2; n = 0, 1, 2, . . .(11.4)

The equation for R is now r2R′′ + rR′ = n2R, or

r2R′′ + rR′ − n2R = 0.

This is an ordinary differential equation which you probably have
seen in your ODE course; it is called an Euler equation. The main
feature of an Euler equation is that each term contains a power of r
that coincides with the order of the derivative of R.

Euler equations always admit particular solutions of the form R(r) =
rα, where α is a suitable (possibly fractional) power, which we will now
find. Differentiating twice and substituting into the equation, we get

α(α− 1)rα + αrα − n2rα = 0,

or, cancelling the common (positive) factor rα,

α(α− 1) + α− n2 = 0,

or just

α2 − n2 = 0.

This is the characteristic equation for the Euler equation. In this case,
the solutions are particularly easy to find: α = ±n.

Accordingly, we have two particular solutions for our equation:
R1(r) = rn and R2(r) = r−n. The general solution of the factor R(r)
is a linear combination of these:

R(r) = Pnr
n + Qnr

−n, n = 0, 1, 2, . . . ,

where Pn and Qn are arbitrary constants.
For n = 0 the two solutions coincide and are equal to r0 = 1 =

const. In this case a second solution of the corresponding equation
r2R′′ + rR′ = 0 is R(r) = ln r.

Exercise 6. Find the general solution of the Euler equation r2R′′+
rR′ = 0, corresponding to the case n = 0.

Hint: We already know one particular solution, R(r) = 1 = const.
To find the second solution, do the change of variables R′ = z and solve
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a first-order separable equation for z. You should get a second solution
looking like R(r) = ln r.

We will ignore this second solution because it is not bounded at the
center of the circle, when r = 0.

If Qn is nonzero for some positive n, then R(r) will contain the
term r−n, which blows up at the center of the circle. We don’t want
this kind of behavior, so we ask that Qn = 0 for all nonzero n’s.

Exercise 7. Can you imagine a problem involving ∆u = 0 some-
where and u = f on the boundary of a circle, for which Qn nonzero
could be useful? (Think outside the box!)

We have thus obtained the radial factor:

Rn(r) = Pnr
n, n = 0, 1, 2, . . .

Combining the two factors we get the eigenfunctions of the given
problem un(r, θ) = Rn(r)Θn(θ):

un(r, θ) = rn(An cos nθ + Bn sin nθ), n = 0, 1, 2, . . .

All these functions satisfy the Laplace equation, that is, all these
functions are harmonic. In particular, we get the following interesting
result: the functions

rn cos nθ and rn sin nθ

are harmonic for every n = 0, 1, 2, . . .
Exercise 8. Have you seen these functions before? Where and

when? Do you know another way of proving that they are harmonic?
Now we can get back to the original problem (if we still remember

what it was!). Each un satisfies the Laplace equation. Since this equa-
tion is linear and homogeneous, any linear combination of the un’s will
also satisfy the same equation. This is even true for an infinite linear
combination, provided the series converges nicely enough. So,

u(r, θ) =
∞∑

n=0

un(r, θ) = A0 +
∞∑

n=1

rn(An cos nθ + Bn sin nθ)(11.5)

will be a solution of ∆u = 0. Our hope is to be able to pick the
coefficients An and Bn so as to also satisfy the boundary condition
u(a, θ) = f(θ).

We have

u(a, θ) = A0 +
∞∑

n=1

an(An cos nθ + Bn sin nθ).(11.6)
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To compare this with f(θ) it helps to expand this function in Fourier
series:

f(θ) =
a0

2
+

∞∑
n=0

(an cos nθ + bn sin nθ),(11.7)

where

an =
1

π

∫ π

−π

f(φ) cos nφ dφ, n = 0, 1, 2, . . . ;(11.8)

bn =
1

π

∫ π

−π

f(φ) sin nφ dφ, n = 1, 2, . . .(11.9)

Expansion (11.7) is valid under mild assumptions on f(φ); for exam-
ple, it holds if f is piecewise smooth. Unfortunately, just the assump-
tion that f be continuous is not enough. We will ignore this question
for now, and assume that everything converges. (As D’Alembert said,
“allez en avant et la fois fous viendra”—“just do it now, and prove it
later”.)

We want u(a, θ) to coincide with f(θ). Comparing (11.6) and (11.7),
we get

A0 =
a0

2
; anAn = an; anBn = bn, n = 1, 2, . . .

In turn, using (11.8) and (11.9), this implies that

A0 =
1

2π

∫ π

−π

f(φ) dφ;

An =
1

anπ

∫ π

−π

f(φ) cos nφ dφ, n = 1, 2, . . . ;

Bn =
1

anπ

∫ π

−π

f(φ) sin nφ dφ, n = 1, 2, . . . .

By substituting all these expressions into (11.5) we obtain a formula
for the solution of our problem:

u(r, θ) =
1

2π

∫ π

−π

f(φ) dφ+
1

π

∞∑
n=1

(r

a

)n
∫ π

−π

(cos nθ cos nφ+sin nθ sin nφ)f(φ) dφ.

Using the addition formula for the cosine, we can simplify a little this
expression:

u(r, θ) =
1

2π

∫ π

−π

f(φ) dφ +
1

π

∞∑
n=1

(r

a

)n
∫ π

−π

cos n(θ − φ)f(φ) dφ.

(11.10)
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11.4. The Poisson Kernel

Formula (11.10) is usually as far as one can go, using the method of
separation of variables. Sometimes, though, one gets lucky (are you
feeling lucky today?), and one can obtain a more compact expression.
That’s what we will do now. Let us work a little more with (11.10).
To begin with, let us assume that it is legal to interchange summation
and integration. Again, you need some assumptions on f(φ) for this
to hold, but we will again ignore this fact for the time being. Then we
can rewrite (11.10) as

u(r, θ) =
1

π

∫ π

−π

[
1

2
+

∞∑
n=1

(r

a

)n

cos n(θ − φ)

]
f(φ) dφ.(11.11)

The surprising fact is that you can actually compute the sum of this
series. We don’t want to spoil you the fun of actually doing it yourself.

Exercise 9. Compute the sum:

1

2
+

∞∑
n=1

tn cos nα, |t| < 1.(11.12)

The first term 1
2

is here for convenience; besides, this is the series we
need.

Here is a hint: Use complex variables to relate this to a geometric
series. The idea is that this series is the real part of the series

1

2
+

∞∑
n=1

tneinα,(11.13)

which converges for every t less than 1 in absolute value. Find the sum
of (11.13) using geometric series. Then the real part of your answer
will be the sum of (11.12).

As another hint, here is the answer you should get:

1

2
+

∞∑
n=1

tn cos nα =
1− t2

2(1− 2t cos α + t2)
, |t| < 1.(11.14)

Exercise 10. (This is an aside.) When t = 1, expression (11.14)
no longer makes sense. However, you can still find the finite sum

N∑
n=1

cos nα = cos α + cos 2α + · · ·+ cos nα,
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which is interesting by itself, and has many applications. Find this
sum, using similar ideas.

Continuing with our computations, let us apply (11.14) to find the
sum of the series in (11.11):

u(r, θ) =
1

2π

∫ π

−π

1−
(r

a

)2

1− 2
(r

a

)
cos(θ − φ) + r2

f(φ) dφ,

or, multiplying top and bottom by a2,

u(r, θ) =
1

2π

∫ π

−π

a2 − r2

a2 − 2ar cos(θ − φ) + r2
f(φ) dφ.(11.15)

This formula makes sense for every θ and every r < a. When r = a,
expression (11.15) no longer makes sense.

The function

K(r, θ, a, φ) =
1

2π

a2 − r2

a2 − 2ar cos(θ − φ) + r2
(11.16)

is called the Poisson kernel. Using it, we can write the solution to the
problem of finding u such that ∆u = 0 inside the circle, and u = f on
the boundary, in a very compact form:

u(r, θ) =

∫ π

−π

K(r, θ, a, φ)f(φ) dφ.(11.17)

11.5. Validity of the Solution

Formula (11.15) or, equivalently, (11.17), looks very nice. However, we
obtained it under unspecified assumptions for f , lighthearted assump-
tions that the infinite sum of solutions is still a solution, and a careless
swapping of integration.

What one can try to do now is look at (11.15), forget how we
obtained this formula, and see if it satisfies the given problem. One
immediate problem we have already noticed is that (11.15) no longer
makes sense when r = a, so there is little hope that (11.15) will directly
satisfy the boundary condition. However, one can prove the following
surprising result.

Theorem 11.18. If f(θ) is continuous and periodic with period 2π
then the function u(r, θ) given by (11.15) or (11.17) satisfies ∆u = 0
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for r < a and:

lim
r→a−,θ→θ0

= f(θ0),(11.19)

for every θ0.

Remark. In other words, if we define a function u(r, θ) for r ≤ a and
every θ as:

u(r, θ) =

{∫ π

−π
K(r, θ, a, φ)f(φ) dφ, if r < a,

f(θ), if r = a,
(11.20)

then we obtain a function that is continuous on the closed circle r ≤ a
and harmonic inside it.

One of the reasons why this result is surprising is the fact that
we know that the Fourier expansion for f , which was one of our key
assumptions along the way, in general is not valid when f is just con-
tinuous.

And important addition to this result is that the solution is
unique. Indeed, this is a consequence of the Maximum Principle (Lec-
ture 3, Challenge Problem 5).

What is more, one can prove that, in fact, if f is only piecewise con-
tinuous and has only jump discontinuities, then (11.15) is still a har-
monic function inside the circle and satisfies the limit condition (11.19)
at every point θ0 at which f(θ) is continuous.

The proof of the theorem is very beautiful and uses several results
of analysis and harmonic functions:

Proof. (a) If f(θ) is continuous or, even weaker, if f(θ) is bounded
an integrable, the function u(r, θ) given by:

u(r, θ) =
a0

2
+

∞∑
n=1

(r

a

)n

(an cos nθ + bn sin nθ),(11.21)

where an and bn are given by (11.8) and (11.9), is infinitely
differentiable inside the circle. Indeed, the Fourier coefficients
an and bn are bounded, so any derivative of u(r, θ) is bounded
above in absolute value by

∞∑
n=0

(r

a

)n

(|an|+ |bn|),

which converges inside the circle. A theorem from analysis
(the “Weierstrass M -series theorem”) shows that u(r, θ) has
as many derivatives as we want, and in fact satisfies ∆u = 0
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inside the circle, that is, it is harmonic inside the circle. The
same applies to all subsequent formulas we got for u(r, θ); in
particular, this proves that (11.15) is harmonic inside the circle,
under these very weak assumptions on f .

(b) If f(θ) has many continuous derivatives, let us say three, to be
on the safe side, then equality (11.21) is true, with an and bn

given by (11.8) and (11.9). Moreover, the coefficients an and

bn can be bounded by terms of the form
M

n3
. (Remember Lec-

ture 6.) This, again by the “Weierstrass M -series” result will
imply that the series (11.21) converges uniformly on the closed
circle r ≤ a, and on the boundary is equal to f(θ). In other
words, if f is sufficiently smooth, then (11.21) indeed produces
a solution u(r, θ) to our problem: a function u harmonic inside
the circle and equal to f on the boundary. This in turn implies
that the same can be said about the function u(r, θ) defined
by (11.15).

(c) If f(θ) is (only) continuous, then it can be uniformly approx-
imated by a sequence of functions fk(θ) that have as many
derivatives as desired. This is a powerful result from analysis,
the Weierstrass approximation theorem (this guy Weierstrass
keeps popping up awfully often, don’t you think?). In fact, one
can choose fk to be even a finite sum of trigonometric functions
sin(mθ) and cos(mθ) (in general, it will not be a truncation of
the Fourier series, though).

(d) For every fk(θ), which is now as smooth as we want, the cor-
responding function uk(r, θ) given by (11.15) or by (11.17) for
fk instead of f , will be a function harmonic inside the circle,
and equal to fk on the boundary of the circle. This means that
uk−um will also be harmonic on the circle and equal to fk−fm

on the boundary of the circle, for every k and m.
(e) Remember now the Maximum Principle for harmonic functions

(Lecture 3): the maximum and the minimum of uk − um on
the closed circle can only be attained on the boundary. This
will mean that if |fk − fm| can be made less than ε, then also
|uk(r, θ) − um(r, θ)| will be less than ε for all r ≤ a and all
θ. Since fk converges uniformly (to f) on the boundary of
the circle, this will imply that uk converges uniformly to some
function u on the whole closed circle.
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(f) Finally, since fk converges uniformly to f , this means that
when taking the limit as k →∞ in

uk(r, θ) =
1

2π

∫ π

−π

a2 − r2

a2 − 2ar cos(θ − φ) + r2
fk(φ) dφ

we can switch “limk→∞” with integration at the right-hand
side. This proves that the limit function u of the sequence uk

is precisely given by (11.15), and concludes the proof.
TaDaaa!! �

The proof of the more general assertion when f is piecewise contin-
uous is omitted. We will only observe that one important ingredient
in this proof if the fact that the Poisson kernel K(r, θ, a, φ) is positive
for r < a, a fact that we invite you to prove.

Exercise 11. Prove that the Poisson kernel K(r, θ, a, φ) is always
positive for r < a.

11.6. Interpretation of the Poisson Kernel

Every time you get a solution of a linear problem in the form (11.17),
where f(θ) may be either a non-homogeneous boundary conditions (as
in this case) or a non-homogeneous right-hand side (as in the case of
a force acting on the system), the kernel K has an important mathe-
matical and physical interpretation.

To save a little in the notation, since the radius of the circle is fixed
and the function K depends on the difference θ−φ rather than on the
variables θ and φ independently, let us call:

k(r, s) =
1

2π

a2 − r2

a2 − 2ar cos s + r2
,

so that K(r, φ, a, θ) = k(r, φ− θ). Then (11.17) can be rewritten as

u(r, θ) =

∫ π

−π

k(r, θ − φ)f(φ) dφ.(11.22)
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Imagine now a constant boundary condition f of height 1
∆

, concen-
trated on a small interval of length ∆ with center at a point φ0.

In other words, f is zero everywhere, except near φ0, at which it is
constant and equal to 1

∆
on an interval of length ∆. The height of f has

been chosen so as to have
∫ π

−π
f(φ) dφ = 1. Call δφ0 this function. (It

also depends on ∆, but let us not complicate the notation.) According
to (11.22), the solution of the Dirichlet problem on the circle for this
f is given by

u(r, θ) =

∫ π

−π

k(r, θ − φ)δφ0(φ) dφ.

Applying the intermediate value theorem for integrals, we can rewrite
this as

u(r, θ) = k(r, θ − φ∗)

∫ π

−π

δφ0(φ) dφ,

where φ∗ is a number on the interval with length ∆ and center φ0.
Since the integral of δφ0 is equal to 1, this becomes

u(r, θ) = k(r, θ − φ∗).

Taking the limit as ∆ → 0, we get

u(r, θ) = k(r, θ − φ0).

As ∆ → 0, the function δφ0 itself tends to infinity in such a way that
its integral is kept equal to 1 all the time. This is the so-called the
delta function with center φ0, and is denoted as δ(θ − φ0). It is not a
function but rather a generalized function, what mathematicians call a
distribution. It is one of those extremely useful beasts that was born in
the deranged mind of physicists and mathematicians had to work very
hard to make any sense out of them.

Lemma 11.23. We conclude that the Poisson kernel

K(r, θ, a, φ) = k(r, θ − φ) =
1

2π

a2 − r2

a2 − 2ar cos(θ − φ) + r2
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is a harmonic function inside the circle r < a that is equal to zero
everywhere on the boundary, except at the point φ, at which it is equal
to ∞. Not only that, but k(r, θ−φ) is a harmonic function that on the
boundary coincides with the delta function with center at φ.

Knowing the meaning of the Poisson kernel, one can now use an
heuristic argument to obtain again formula (11.22).

Assume we are given a function f(θ) on the boundary of the circle.
We divide the interval [0, 2π] into N intervals of length ∆ and approxi-
mate f(θ) by a piecewise constant function, writing it down as the sum
of functions f(φi)δφi

∆:

f(φ) ≈
N∑

i=1

f(φi)δφi
∆.

The factor ∆ is needed to get the correct height f(θi); recall that
δφi

had height 1
∆

.
Since the Dirichlet problem is linear, the solution to the boundary

condition f(φi)δφi
∆ will be f(φi)∆ times the solution to the boundary

condition δθi
. Therefore, the solution will be

k(r, θ − φi)f(φi)∆.

Again, since the Dirichlet problem is linear, the solution of a sum of
boundary conditions f(φi)δφi

∆ will be the sum of the solutions for each
boundary condition separately, that is,

N∑
i=1

k(r, θ − φi)f(φi)∆.

We recognize this as a Riemann sum, so if we take the limit as ∆ → 0,
we get the solution to the problem with boundary condition f(θ) as

lim
∆→0

N∑
i=1

k(r, θ − φi)f(φi)∆ =

∫ π

−π

k(r, θ − φ)f(φ) dφ.
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TaDaaaa!!

11.7. Examples

In practice, Laplace equations arise when seeking steady-state distribu-
tions. In the one-dimensional heat equation, for example, ut = c2uxx,
for a finite bar, 0 ≤ x ≤ L, a steady state distribution of temperature
is a time-independent solution. This implies ut = 0, so for u = u(x)
we get the one-dimensional Laplace equation uxx = 0, whose general
solution is a bunch of lines, u = Ax + B.

If we seek the steady-state distribution of temperature for a circular
membrane, this leads from the heat equation ut = ∆u to the Laplace
equation ∆u = 0, since ut = 0 for the steady-state distribution.

In Electrostatics, according to Maxwell’s equations the electrostatic
potential φ satisfies the equation ∆φ = −4πρ, where ρ is the density
of the charges. Thus, if there are no electric charges inside the region,
the potential will satisfy Laplace’s equation ∆φ = 0.

Example 1. As a concrete example, let us consider the problem
of finding the steady-state distribution of temperature of a circular
membrane, if the temperature is kept fixed and equal to 1 in half the
boundary, and −1 in the other half. Namely, we will consider the
problem of finding u(r, θ) on the circle r ≤ a such that

∆u(r, θ) = 0 for r < a, PDE

u(a, θ) =

{
−1, if −π < θ < 0,

1, if 0 < θ < π. BC

Rephrasing a little our computations in Section 10.3, as in (11.21)
we can say that the solution will look like:

u(r, θ) =
a0

2
+

∞∑
n=1

(r

a

)n

(an cos nθ + bn sin nθ),

where:

an =
1

π

∫ π

−π

f(θ) cos nθ dθ n = 0, 1, 2, . . .(11.24)

bn =
1

π

∫ π

−π

f(θ) sin nθ dθ, n = 1, 2, . . .(11.25)

In our case f(θ) is odd; therefore, all the coefficients an will vanish.
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As regards the bn, using the symmetry of the integrand and the
interval of integration, we can write

bn =
2

π

∫ π

0

f(θ) sin nθ dθ

= − 2

nπ
(cos nπ − cos 0) =

2

nπ
(1− (−1)n)

=

{
0, if n is even,
4

nπ
, if n is odd.

Therefore, the solution is

u(r, θ) =
4

π

(
r sin θ

a
+

r3 sin 3θ

3a3
+

r5 sin 5θ

5a5
+ · · ·

)
=

4

π

∞∑
n=0

(r

a

)2n+1 sin(2n + 1)θ

2n + 1
.

Example 2. We seek a function harmonic inside the unit circle and
equal to (the restriction of) the polynomial x3 − y3 on the boundary
of the unit circle. Let us write the problem in polar coordinates. Since
on the unit circle we have x = cos θ and y = sin θ, we must solve the
problem

∆u(r, θ) = 0 if r < 1, PDE

u(1, θ) = cos3 θ − sin3 θ. BC

To expand the boundary condition, cos3 θ − sin3 θ, in Fourier series, it
is perhaps faster to use trigonometric identities.

Exercise 12. Use de Moivre’s formula:

(cos θ + i sin θ)n = cos nθ + i sin nθ

with n = 3 to obtain the formulas

cos 3θ = cos3 θ − 3 cos θ sin2 θ(11.26)

sin 3θ = − sin 3θ + 3 cos2 θ sin θ.(11.27)

In turn, use these identities, plus a little “massaging”, to prove that

cos3 θ =
3

4
cos θ +

1

4
cos(3θ),(11.28)

sin3 θ =
3

4
sin θ − 1

4
sin(3θ).(11.29)

Identities (11.28,11.29) yield the desired Fourier expansion of the bound-
ary condition:
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cos3 θ − sin3 θ =
3

4
cos θ +

1

4
cos(3θ)− 3

4
sin θ +

1

4
sin(3θ).(11.30)

By (11.21), the solution will look like

u(r, θ) =
a0

2
+

∞∑
n=1

rn(an cos nθ + bn sin nθ).

At r = 1, the solution will be

u(1, θ) =
a0

2
+

∞∑
n=1

(an cos nθ + bn sin nθ).

Comparing this with (11.30) we conclude that

a1 =
3

4
, b1 = −3

4
, a3 =

1

4
, b3 =

1

4
,

and all the other coefficients will be equal to zero. In conclusion, the
solution is

u(r, θ) =
3

4
r(cos θ − sin θ) +

1

4
(cos 3θ + sin 3θ).

This solution can be written back in Cartesian coordinates, recalling
that r cos θ = x and r sin θ = y. Thus, the first two terms are just
3

4
(x − y). To get the other two terms in Cartesians, we use again the

identities (11.26) and (11.27):

r3 cos 3θ = r3(cos3 θ − 3 cos θ sin2 θ) = x3 − 3xy3;

r3 sin 3θ = r3(− sin3 θ + 3 cos2 θ sin θ) = −y3 + 3x2y.

Therefore, in Cartesian coordinates the solution is

u(x, y) =
3

4
(x− y) +

1

4
(x3 − 3xy2 − y3 + 3x2y).(11.31)

Exercise 13. Check directly that (11.31) is harmonic inside the
unit circle (in fact, it is harmonic everywhere), and that it is equal to
x3 − y3 on the boundary of the circle.



18 J. TOLOSA & M. VAJIAC, AN INTRODUCTION TO PDE’S

11.8. Challenge Problems for Lecture 10

Problem 1. Integrating the Poisson Kernel. Prove that∫ π

−π

K(r, θ, a, φ) dφ

is a harmonic function u(r, θ) inside the circle r < a, and tends to 1
for every θ, as r → a−.

Hint: solve the Dirichlet problem ∆u = 0 inside the circle and
u = 1 on the boundary, and use uniqueness of the solution.

Problem 2. Solve the problem

∆u(r, θ) = 0 if r < a, PDE

u(a, θ) =

{
0, if − π < θ < 0,

1, if 0 < θ < π. BC

Problem 3. Using the result you found in Problem 2, plus uniqueness
of the solution of the Dirichlet problem for the Laplace equation, write
down the integral∫ π

0

K(r, θ, a, φ) dφ =
1

2π

∫ π

0

a2 − r2

a2 − 2ar cos(θ − φ) + r2
dφ,

as an infinite series, assuming r < a.

Problem 4. One can use polar coordinates, and separation of vari-
ables, for “pizza slices”, that is, for sectors of a circle. As an example,
find the steady-state temperature distribution of a thin plate over the
sector

Ω = {(r, θ) | 0 < r < 1, 0 < θ <
π

3
}

given that

u(r, 0) = 0, u
(
r,

π

3

)
= 0;

u(1, θ) = θ
(π

3
− θ

)
.

We assume that the temperature at zero is bounded.
Repeat the process of separation of variables. What will be the

boundary conditions for Θ(θ)? Notice that the eigenvalues will not be
the same as for the case of the full circle.

Problem 5. Find the steady-state temperature distribution of a thin
plate over the sector

Ω = {(r, θ) | 0 < r < 1, 0 < θ <
π

3
}
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given that

u(r, 0) = 0, uθ

(
r,

π

3

)
= 0;

u(1, θ) = θ

(
1− 3θ

2π

)
.

Assume that the temperature at zero is bounded.
(See the comments in Problem 4.)


