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LECTURE 12
Heat Transfer in the Ball

12.1. Outline of Lecture

• The problem
• The problem for radial temperatures
• Solution by separation of variables
• Interchanging infinite sums and limits

12.2. The Problem

By the ball of radius a we mean the set B in R3 defined by

B =
{
(x, y, z) ∈ R3

∣∣x2 + y2 + z2 ≤ a2
}

.

We are interested in studying how the temperature u(x, y, z, t) varies
from point to point and with the time t. We already know that the
temperature must satisfy the heat equation

(12.1) ut = k∆u = k [uxx + uyy + uzz] ,

where k > 0 is a constant called the thermal diffusivity.
In general we are required to supply the initial temperature distri-

bution,

(12.2) u(x, y, z, 0) = u0(x, y, z) for (x, y, z) ∈ B,

and the temperature on the boundary,

(12.3) u(x, y, z, t) = f(x, y, z) for (x, y, z) ∈ ∂B and t > 0.
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Of course, the boundary of the ball is the sphere

S = ∂B =
{
(x, y, z) ∈ R3

∣∣x2 + y2 + z2 = a2
}

.

One example of this phenomenon involves deciding how long it takes
to cook a turkey (approximately spherical) that has been defrosted, al-
lowed to reach room temperature, and then is placed into an oven where
a constant ambient temperature is maintained. A second problem of
the same type arises when the turkey is taken out of the oven and
allowed to sit with its surface exposed to room temperature while its
interior temperature distribution is what has been reached in the oven.
In this case the center of the turkey continues to heat up for some time
while the outer portion is cooling.

The problem in equations (12.1), (12.2), and (12.3) is called the
Dirichlet problem for the heat equation in the ball. The solution is
typically achieved in two stages. First we find the steady-state tem-
perature us. This is a temperature which is independent of time and
has the same boundary conditions as u. Since us satisfies ∂us/∂t = 0
and also satisfies the heat equation (12.1)), we must have ∆us = 0.
Therefore us solves the problem

(12.4)
∆us(x, y, z) = 0 for (x, y, z) ∈ B, and

us(x, y, z) = f(x, y, z) for (x, y, z) ∈ ∂B.

The problem in (12.4) is called the Dirichlet problem for the Laplacian,
∆.

The second stage in the solution is to find the difference v(x, y, z, t) =
u(x, y, z, t)−us(x, y, z), which might be referred to as the transient tem-
perature. Putting together the information in (12.1), (12.2), (12.3), and
(12.4), we see that v must solve the problem
(12.5)

vt(x, y, z, t) = k∆v(x, y, z, t) for (x, y, z) ∈ B and t > 0,

v(x, y, z, 0) = u0(x, y, z)− us(x, y, z) for (x, y, z) ∈ B, and

v(x, y, z, t) = 0 for (x, y, z) ∈ ∂B and t > 0,

Comparing (12.5) to the problem described in (12.1), (12.2), and
(12.3), we see that v is a solution to the Dirichlet problem for the heat
equation with homogeneous boundary conditions. This will enable us
to use separation of variables in our solution in Section 12.4.

Having solved the problems in (12.4) and (12.5), the solution of the
Dirichlet problem for the heat equation is u(x, y, z, t) = us(x, y, z) +
v(x, y, z, t).
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12.3. The Problem for Radial Temperatures

The problems in (12.4) and (12.5) are rather daunting in the generality
we have presented. We will limit ourselves to the case when the initial
temperature u0 and the boundary temperature f are both constants.

Let’s turn first to the problem in (12.4) of finding the steady-
state temperature, but now with a constant temperature f given on
the boundary. Using either physical intuition or mathematical insight
we are led to the suggestion that the steady-state temperature will
also be a constant. We can verify directly that the constant function
us(x, y, z) = f is a solution to (12.4).

Next, in (12.5) we are looking for a temperature v which is equal
to 0 everywhere on the boundary, and is initially equal to the constant
v0 = u0−f . Let’s consider this solution along a radius of the ball. Since
the initial and boundary conditions do not distinguish one radius from
another, we are led to expect that the temperature distribution v will
be the same along any radius. Therefore, in the spatial coordinates,
v will depend only on the distance from the center of the ball, which
is r =

√
x2 + y2 + z2. Let’s look for a solution to (12.5) of the from

v(r, t).
We need to compute ∆v for a function of this form. If g is any

function that depends only on r, so that g = g(r), then by the chain
rule

(12.6)
∂g

∂x
=

∂g

∂r
· ∂r

∂x
= grrx.

We need to compute rx. That is most easily done by differentiating
both sides of

(12.7) r2 = x2 + y2 + z2

to get

2rrx = 2x or rx =
x

r
.

Similarly,

ry =
y

r
and rz =

z

r
.

Therefore from (12.6), if g depends only on r,

(12.8)
∂g

∂x
=

x

r

∂g

∂r
.

In particular, vx = (x/r)vr. Using the product formula and (12.8) , we
compute that the second derivative is

vxx =
∂vx

∂x
=

∂

∂x

(x

r
· vr

)



4 JOHN C. POLKING, AN INTRODUCTION TO PDE’S

=
∂

∂x

(x

r

)
· vr +

x

r
· ∂vr

∂x

=
r − x(x/r)

r2
· vr +

x

r
· x

r

∂vr

∂r

=
r2 − x2

r3
vr +

x2

r2
vrr.

The second derivatives with respect to y and z have similar formu-
las. Adding them together using (12.7) we get

(12.9) ∆v = vxx + vyy + vzz =
2

r
vr + vrr.

Thus, to solve (12.5) we are looking for a function v(r, t) which
satisfies
(12.10)

vt(r, t) = k

[
vrr(r, t) +

2

r
vr(r, t)

]
for 0 ≤ r < a and t > 0,

v(r, 0) = v0 for 0 ≤ r < a,

v(a, t) = 0 for t > 0.

12.4. Solution by Separation of Variables

In view of past experience, it is natural to look for product func-
tions v(r, t) = R(r)T (t) which satisfy the differential equation and the
boundary condition in (12.10), or
(12.11)

vt(r, t) = k

[
vrr(r, t) +

2

r
vr(r, t)

]
for 0 ≤ r < a and t > 0,

v(a, t) = 0 for t > 0.

Separating variables in the usual way, we find that T must satisfy

(12.12) T ′ = −λkT,

while R must satisfy

(12.13) −
[
R′′ +

2

r
R′

]
= λR and R(a) = 0,

where λ is a constant.1 The solution to (12.12) is

(12.14) T (t) = e−λkt.

1The functions T and R are each functions of one variable although the variable is
different for each. We use the prime notation to indicate the derivative with respect
to the one variable. Thus T ′ = dT/dt and R′ = dR/dr.
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To find the solution to (12.13) we must work a little harder, but the
solution is surprisingly easy.

First of all we must make the differential equation in (12.13) look
like a Sturm-Liouville equation. This means we want to find a function
p(r) so that

p

[
R′′ +

2

r
R′

]
= [pR′]

′
= pR′′ + p′R′.

This requires p′ = 2p/r, so p(r) = r2 will work. Multiplying the
differential equation in (4.3) by r2, it becomes

(12.15) −
[
r2R′′ + 2rR′] = −

[
r2R′]′ = λr2R.

Equation (12.15) now has the form of a Sturm-Liouville equation with
weight function r2. Notice that the coefficient p(r) = r2 vanishes at
r = 0, so this is a singular Sturm-Liouville equation.

Equation (12.13)) gives only the one boundary condition, R(a) = 0.
However, there is a hidden condition that we see when we realize that
the function v(r, t) = T (t)R(r) is a temperature and has a finite value
at r = 0. This means that R(0) is also finite. Hence the complete
Sturm-Liouville problem for R is

(12.16)

−
[
r2R′′ + 2rR′] = −

[
r2R′]′ = λr2R,

R(0) is finite,

R(a) = 0.

We can simplify the differential equation in (12.16) considerably by
making the substitution2

(12.17) S = rR.

Then S ′ = rR′ + R and S ′′ = rR′′ + 2R′. Making this substitution
into the differential equation, we get −rS ′′ = λrS, or −S ′′ = −λS.
From (12.16) and (12.17), the boundary conditions satisfied by S are
S(0) = 0 · R(0) = 0 and S(a) = a · R(a) = 0. To sum up, the function
S(r) = rR(r) must satisfy

−S ′′ = λS, with S(0) = S(a) = 0.

2While this substitution comes out of the blue here, mathematicians have discovered
that if we have a Sturm-Liouville equation (pu′)′ + qu = λsu on an interval of
the form (0, b), which is singular at the initial end point x = 0, and where the
coefficient p can be factored as p(x) = x2αP (x), where P (0) 6= 0, the substitution
w(x) = xαu(x) will sometimes change the problem to a Sturm-Liouville problem
that is regular at x = 0.
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We have seen this Sturm-Liouville problem several times. The solutions
are

λn =
n2π2

a2
and Sn(r) = sin

nπr

a
, for n = 1, 2, 3, . . ..

Since R = S/r, the solutions to the Sturm-Liouville problem in (12.16)
are

(12.18) λn =
n2π2

a2
and Rn(r) =

1

r
sin

nπr

a
, for n = 1, 2, 3, . . ..

Notice that the apparent singularity at r = 0 is not really there. We
will set

(12.19) Rn(0) = lim
r→0

Rn(r) = lim
r→0

sin(nπr/a)

r
=

nπ

a
.

Let’s say a few words about orthogonality that are not directly
related to our train of thought. We have proved directly that∫ a

0

Si(r)Sj(r) dr =

∫ a

0

sin
iπr

a
sin

jπr

a
dr = 0 if i 6= j.

From Sturm-Liouville theory, we know that the eigenfunctions Rj of
the problem in (12.16) are orthogonal with respect to the weight r2.
Thus ∫ a

0

Ri(r)Rj(r) r2 dr = 0 if i 6= j.

Since rRj = Sj, this is in exact agreement with the orthogonality
relation for Sj. Finally, Let’s look at the orthogonality of the functions

Rj(r) on the ball B, where r =
√

x2 + y2 + z2. Using polar coordinates
to do the integration and integrating out the angles φ and θ, we have∫ ∫ ∫

B

Ri(r)Rj(r) dxdydz =

∫ a

0

∫ 2π

0

∫ π

0

Ri(r)Rj(r) r2 sin φ dφdθdr

= 4π

∫ a

0

Ri(r)Rj(r) r2 dr

= 0 if i 6= j.

The last line follows from the orthogonality relationship for the Rj with
respect to the weight r2. It is the orthogonality on the ball B which is
really important here. Unfortunately, we do not have time to explore
this.

Let’s return to the solution of the heat equation. From (12.14) and
(12.18) we see that the product solutions of (12.11) are

(12.20) vn(r, t) = e−kn2π2t/a2 sin(nπr/a)

r
, for n = 1, 2, 3, . . ..
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By superposition a convergent infinite series of the form

(12.21)

v(r, t) =
∞∑

n=1

Anvn(r, t)

=
∞∑

n=1

Ane
−kn2π2t/a2 sin(nπr/a)

r

is also a solution to (12.11).
To complete the solution to (12.8), we must choose the coefficients

An so that v(r, 0) = v0. Multiplying (4.11) by r and evaluating at
t = 0, this becomes

v0r =
∞∑

n=1

An sin
nπr

a
for 0 < r < a.

This is the Fourier sine series for the function v0r. The coefficients are
An = (−1)n+1 · 2av0/πn, so

v0 = 2v0

∞∑
n=1

(−1)n+1 sin(nπr/a)

nπr/a
.

Notice for later reference that with v0 = 1/2 this becomes

(12.22)
1

2
=

∞∑
n=1

(−1)n+1 sin(nπr/a)

nπr/a
for 0 < r < a .

Inserting the coefficients An into (12.21), we see that the solution
to (12.5) is

(12.23) v(r, t) = 2v0

∞∑
n=1

(−1)n+1e−kn2π2t/a2 sin(nπr/a)

nπr/a
.

Recall that in our two stage approach, the solution to the original
Dirichlet problem for the heat equation is the sum of the steady-state
solution and the transient solution. Thus

(12.24)

u(r, t) = us(r, t) + v(r, t)

= f + 2(u0 − f)
∞∑

n=1

(−1)n+1e−kn2π2t/a2 sin(nπr/a)

nπr/a
.

Example. Let’s look at a special case. Assume that we are cooking a
turkey, roughly the shape of a sphere of radius 1 foot. The turkey has
been defrosted and is uniformly at room temperature of 75◦. We put
it into the oven at a temperature of 350◦. We want to cook it until the
center has a temperature of 150◦. With time measured in hours, the
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thermal diffusivity in the proper units is k = 0.02. How long should
we cook the turkey?

We have all of the information we need. The parameters are f =
325, u0 = 75, a = 1, and k = 0.02. The solution is given in equation
(12.24). Using Matlab, we sum the first 200 terms of the series in
(12.24), and plot the results versus r at time intervals of 1 hour. The
result is shown in Figure 1.

A more efficient way to find the time when the center of the turkey
is at 150◦ is to plot that temperature versus time. Setting r = 0 in
(12.24) and using (12.19) we see that
(12.25)

u(0, t) = lim
r→0

u(r, t)

= f + 2(u0 − f)
∞∑

n=1

(−1)n+1e−kn2π2t/a2

lim
r→0

sin(nπr/a)

nπr/a

= f + 2(u0 − f)
∞∑

n=1

(−1)n+1e−kn2π2t/a2

,

at least for t > 0. Notice that the series in (12.25) does not converge
for t = 0. The result is plotted in Figure 2. Clearly we need to cook
the turkey for a little more than 5 hours.

12.5. Interchanging Infinite Sums and Limits

Let’s return to the computation in (12.25). We skipped a step. The
computation should read
(12.26)

u(0, t) = lim
r→0

u(r, t)

= f + 2(u0 − f) lim
r→0

∞∑
n=1

(−1)n+1e−kn2π2t/a2 sin(nπr/a)

nπr/a

= f + 2(u0 − f)
∞∑

n=1

(−1)n+1e−kn2π2t/a2

lim
r→0

sin(nπr/a)

nπr/a

= f + 2(u0 − f)
∞∑

n=1

(−1)n+1e−kn2π2t/a2

,

Between the second and third lines in (12.26) we have interchanged a
limit and an infinite sum. This should never be done without checking
that it is legitimate. For t > 0 it is legitimate because the exponential
terms decrease so rapidly, but for t = 0 it isn’t.
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Let’s concentrate on the sum and limit terms and do the computa-
tion in both orders for t = 0. First, using (12.22) we have

(12.27) lim
r→0

∞∑
n=1

(−1)n+1 sin(nπr/a)

nπr/a
= lim

r→0

1

2
=

1

2
.

If we interchange the sum and the limit, we get
(12.28)
∞∑

n=1

(−1)n+1 lim
r→0

sin(nπr/a)

nπr/a
=

∞∑
n=1

(−1)n+1 = 1− 1 + 1− 1 + 1− · · · ,

which is a divergent series. Thus computing the limit of the sum we
get the number 1/2, while the sum of the limits leads to a divergent
series. This is just one of the many strange things that can happen
when we interchange a sum and a limit.

Although the series in (12.28) does not converge, the mathematician
Leonhard Euler insisted that the sum is 1/2. In his defense we should
add that no rigorous definition of convergence existed at the time.
However, setting the sum equal to 1/2 makes the results in (12.27) and
(12.28) equal. It also conveniently gives the correct answer u(0, 0) = u0

in the last line of (12.25)! It is amazing how often using 1/2 as the
sum of this strange, divergent series leads to a correct result.

Here is a theorem giving conditions under which a limit and an
infinite sum can be interchanged.

Theorem. Suppose that fn(x) is a sequence of functions defined on
an interval I = [a, b], and that

∑∞
n=1 fn(x) converges uniformly on I.

Suppose in addition that x0 ∈ I, and that limx→x0 fn(x) exists for each
n. Then

lim
x→x0

∞∑
n=1

fn(x) =
∞∑

n=1

lim
x→x0

fn(x).
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Figure 1. The temperature distribution in the turkey at 1 hour intervals.



LECTURE 12. HEAT TRANSFER IN THE BALL 11

0 2 4 6 8 10
50

100

150

200

250

300

Time in hours

T
em

pe
ra

tu
re

 a
t t

he
 c

en
te

r

Figure 2. The temperature at the center of the turkey versus time.


