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13.1. Outline of Lecture

• Revisiting an old problem
• Making connections
• Second derivative approximation
• Transforming to a matrix problem
• Automating the Process

13.2. Revisiting an Old Problem

In our stay at Park City, we’ve encountered numerous problems similar
to the following.

ut = kuxx, 0 < x < π, t > 0,(13.1)

u(0, t) = u(π, t) = 0, t > 0,(13.2)

u(x, 0) = x3(π − x), 0 < x < π.(13.3)

We’ve assumed that we can find a solution of the form u(x, t) =
y(x)g(t), where the variables “separate,” 1 then substituted it into the

1Unfortunately, I’ve yet to hear a satisfactory explanation as to why one would want
to separate the variables as in u(x, t) = y(x)g(t). The only explanation I’ve heard
is “Look, it works!” However, I am left yearning for more. In my discussions with
Dr. Polking, he has tried to explain that it has to do with the inherent symmetries
of the problem, but I’ll need to pursue this thought further when I get home.

1
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partial differential equation (13.1)

[

y(x)g(t)
]

t
= k

[

y(x)g(t)
]

xx

to find that

y(x)g′(t) = ky′′(x)g(t).

A little more algebra provides

(13.4)
g′(t)

kg(t)
=

y′′(x)

y(x)
= −λ,

where λ is a constant.2

The first ratio in (13.4) leads to the differential equation

(13.5) g′(t) + λkg(t) = 0 with solution g(t) = e−λkt.

The second ratio in (13.4), together with the Dirichlet boundary con-
ditions (13.2), leads to the Sturm-Liouville problem

(13.6) −y′′(x) = λy(x), y(0) = y(π) = 0.

The values of λ for which this equation has nontrivial (nonzero) solu-
tions y(x) are called eigenvalues and the associated solutions y(x) are
called eigenfunctions. Several times during our PDE lectures we saw
that the eigenvalue-eigenfunction pairs for the Sturm-Liouville prob-
lem (13.6) are3

(13.7) λn = n2 and yn(x) = sinnx.

2I found I didn’t understand most of the arguments given that these rates had to
equal a constant (one exception was a neat little argument Katherine Socha shared
with me), so I tried to devise my own. Suppose that that r(t) = s(x) for all t and x
in the domain of each respective function. For purposes of contradiction, suppose
that r is not constant. Then there exists t1 6= t2 in the domain of r such that
r(t1) 6= r(t2). Pick some x0 in the domain of s. Because s(x) = r(t) for all x and t,
I know that s(x0) = r(t1) and s(x0) = r(t2). Because r(t1) 6= r(t2), this contradicts
the fact that s is a function. Therfore, r must be constant. A similar argument
shows that s is constant. Because r(t) = s(x) for all t and x in the respective
domains, the function s must equal the same constant.
3It is important to note that if y(x) is an eigenfunction of (13.6), then so to is
cy(x), where c is any constant. Check this! Therefore, we could just as easily use
yn(x) = (3/4) sinnx as our eigenfunctions. This fact will be important later in the
narrative.
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Thus, the first few eigenvalue-eigenfunction pairs are:

λ1 = 1 ↔ y1(x) = sin x

λ2 = 4 ↔ y2(x) = sin 2x

λ3 = 9 ↔ y3(x) = sin 3x

...

13.3. Making Connections

At this point I immediately began to wonder if there was a connec-
tion between the eigenvalues and eigenfunctions of the Sturm-Liouville
problem and the eigenvalues and eigenvectors of matrices that I en-
countered in my linear algebra course.
Secondly, I began to wonder why many of the PDEs encountered

at PCMI seemed to lead to this exact Sturm-Liouville problem (equa-
tion (13.6)), or at least to something remarkably similar. After sharing
this observation with several of the resident PDE experts at PCMI, I
was informed that there are very few Sturm-Liouville problems that
possess exact analytical solutions. This is one of the reasons that we
seemed to be doing the same problem over and over again.
However, the general Sturm-Liouville problem,

(13.8) −(p(x)y′)′ + q(x)y = λr(x)y,

with a variety of different boundary conditions (Direchlet, Neumann,
Robin, Mixed, etc), must surely possess a wealth of different looking
eigenvalue-eigenfunction pairs. How are we going to solve the general
Sturm-Liouville problem if only a few of them seem to possess solutions
that can be found with analytical techniques?
I found the answers to these questions in a wonderful paper enti-

tled The Schrodinger Equation, written by Dr. John Polking at Rice
University (http://math.rice.edu/~polking).

13.3.1. Approximating the Second Derivative

Recall that under certain conditions, we can use Taylor’s Theorem to
write

y(x+ h) = y(x) + y′(x)h+
y′′(x)

2!
h2 + · · ·

and

y(x− h) = y(x)− y′(x)h+
y′′(x)

2!
h2 + · · · .
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Adding these equations,

y(x+ h) + y(x− h) ≈ 2y(x) + y′′(x)h2,

where we’ve thrown away the remaining higher order terms. Solving
for y′′(x) provides the approximation

(13.9) y′′(x) ≈
y(x− h)− 2y(x) + y(x+ h)

h2
.

Substituting this approximation for the second derivative into the Sturm-
Liouville equation (13.6), we get

(13.10) −
y(x− h)− 2y(x) + y(x+ h)

h2
≈ λy(x).

13.3.2. Partitioning [0, π]

We now partition the interval (see Figure 1) on which we seek the solu-
tion of our Sturm-Liouville problem. The distance between consecutive

0

x0 x1 ��� xj�1 xj xj+1 ��� xN xN +1

�

Figure 1. Partitioning the solution interval [0, π].

points on this interval is given by the following calculation.

h =
π − 0

N + 1
=

π

N + 1

Due to the boundary conditions given in (13.6), the solution is known
at each endpoint of this interval.

y(x0) = y(0) = 0

y(xN+1) = y(π) = 0

However, the solution is unknown at each of the N interior points

xj = jh, j = 1, 2, . . . , N.

If we evaluate the difference equation (13.10) at xj, then

−h−2
[

y(xj − h)− 2y(xj) + y(xj + h)
]

≈ λy(xj).

Because h is the increment between consecutive points on our partition,
xj − h = xj−1 and xj + h = xj+1. Hence,

−h−2
[

y(xj−1)− 2y(xj) + y(xj+1)
]

≈ λy(xj).

We now replace y(xj) with yj and iterate the equation

(13.11) −h−2
[

yj−1 − 2yj + yj+1

]

= λyj
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x

(xj , y(xj))

(xj , yj)

exact

approximate

xj

Figure 2. Note that yj is an approximation of y(xj).

in an attempt to find an approximate solution to the Sturm-Liouville
problem (13.6).
There is an important distinction to note before we continue. Note

that y(xj) represents the exact value of the Sturm-Liouville solution
evaluated at xj, but the variable yj represents the approximation of
y(xj) at xj. This is depicted nicely in Figure 2, where the exact and
approximate solutions of an imaginary Sturm-Liouville problem are
shown.
At this point, we will evaluate equation (13.11) at each interior

point of the partition on [0, π]; that is, at xj for j = 1, 2, . . . , N . It is
instructive to do this for a small value of N , say N = 5.
For j = 1, equation (13.11) becomes

(13.12) −h−2
[

y0 − 2y1 + y2

]

= λy1.

Similarly, for j = 2, 3, and 4, we get

−h−2
[

y1 − 2y2 + y3

]

= λy2,

−h−2
[

y2 − 2y3 + y4

]

= λy3,

−h−2
[

y3 − 2y4 + y5

]

= λy4.

Finally, for j = 5, we get

(13.13) −h−2
[

y4 − 2y5 + y6

]

= λy5.

However, the boundary conditions require

y0 = y(x0) = y(0) = 0,

y6 = y(x6) = y(π) = 0,
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so equation (13.12) becomes −h−2
[

− 2y1 + y2

]

= λy1, while equa-

tion (13.13) becomes −h−2
[

y4−2y5

]

= λy5. This leads to the following
system of five equations in five unknowns.

2h−2y1 − h−2y2 = λy1,

−h−2y1 + 2h
−2y2 − h−2y3 = λy2,

−h−2y2 + 2h
−2y3 − h−2y4 = λy3,

−h−2y3 + 2h
−2y4 − h−2y5 = λy4,

−h−2y4 + 2h
−2y5 = λy5.

This system is unenlightening until it is placed in matrix form.

(13.14)













2h−2 −h−2 0 0 0
−h−2 2h−2 −h−2 0 0
0 −h−2 2h−2 −h−2 0
0 0 −h−2 2h−2 −h−2

0 0 0 −h−2 2h−2

























y1

y2

y3

y4

y5













= λ













y1

y2

y3

y4

y5













System (13.14) has the form

My = λy,

where

M =













2h−2 −h−2 0 0 0
−h−2 2h−2 −h−2 0 0
0 −h−2 2h−2 −h−2 0
0 0 −h−2 2h−2 −h−2

0 0 0 −h−2 2h−2













and y =













y1

y2

y3

y4

y5













.

Aha! We’ve established a relationship between the problem of
finding eigenvalues and eigenfunctions of the Sturm-Liouville problem,
−y′′(x) = λy(x), y(0) = y(π) = 0, to a problem of finding the eigen-
values and eigenvectors of the matrix equation My = λy.
Let’s use Matlab to find the eigenvalues and eigenvectors of the

coefficient matrix of system (13.14). It is helpful to factor h−2 from the
matrix M and note that

M = h−2













2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2













.

Note that the resulting matrix is tridiagonal. Each entry on the main
diagonal is a 2, while each entry in the first sub and supra diagonals is
a −1. It is an easy matter to construct such a matrix in Matlab. To
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form a matrix with five 2’s on its main diagonal, enter the following
command.

>> diag([2,2,2,2,2])

ans =

2 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 2 0

0 0 0 0 2

To form a diagonal matrix with 1’s on the first subdiagonal, enter the
following command.

>> diag([1,1,1,1],-1)

ans =

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

Similarly, the command diag([1,1,1,1],1) will create a matrix with
1’s on the first supra diagonal. This should give us enough information
to build the matrix M .

>> M=diag([2,2,2,2,2])-diag([1,1,1,1],-1)-diag([1,1,1,1],1)

M =

2 -1 0 0 0

-1 2 -1 0 0

0 -1 2 -1 0

0 0 -1 2 -1

0 0 0 -1 2

It should now be an easy matter to calculate the eigenvalues and eigen-
vectors of matrix M . Of course, we must first scale matrix M by h−2.

>> N=5;

>> h=(pi-0)/(N+1);

>> M=diag([2,2,2,2,2])-diag([1,1,1,1],-1)-diag([1,1,1,1],1);

>> M=h^(-2)*M;

>> [v,e]=eig(M)

v =

-0.2887 -0.5000 0.5774 -0.5000 0.2887

-0.5000 -0.5000 0.0000 0.5000 -0.5000

-0.5774 0.0000 -0.5774 0.0000 0.5774

-0.5000 0.5000 -0.0000 -0.5000 -0.5000
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-0.2887 0.5000 0.5774 0.5000 0.2887

e =

0.9774 0 0 0 0

0 3.6476 0 0 0

0 0 7.2951 0 0

0 0 0 10.9427 0

0 0 0 0 13.6129

Equation (13.7) predicts that the first five eigenvalues should be λn =
n2, n = 1, 2, . . . , 5; that is, 1, 4, 9, 16, and 25. The eigenvalues of
matrix M are reported down the main diagonal of matrix e. They are
0.9774 (close to 1), 3.6476 (somewhat close to 4), 7.2951 (not very close
to 9), then 10.9427, and 13.6129, which are not close to the expected
values of 16 and 25.
In matrix v, the first column is













−0.2887
−0.5000
−0.5774
−0.5000
−0.2887













,

which is the eigenvector associated with the first eigenvalue on the diag-
onal of matrix e, namely, 0.9774. This eigenvector is an approximation
of the first eigenfunction of the Sturm-Liouville problem (13.6), as we
shall soon see.

13.3.3. Finer Partitions

Now, how can we make these approximations better? You probably
have guessed that increasing the value of N will create a finer partition
of the interval [0, π] shown in Figure 1. The hope is that this finer par-
tition will generate a more accurate approximation of the eigenvalues
and eigenfunctions of the Sturm-Liouville problem (13.6).
The general system of N equations has matrix form

(13.15)













2h−2 −h−2 0 · · · 0
−h−2 2h−2 h−2 · · · 0
0 −h−2 2h−2 · · · 0
...

...
...

. . .
...

0 0 0 · · · 2h−2

























y1

y2

y3

...
yN













= λ













y1

y2

y3

...
yN













.

The only thing standing in our way of analyzing this system is the
crafting of the coefficient matrix in Matlab. As N increases, the di-
mensions of the coefficient matrix increase, and it soon becomes painful
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to enter the matrix M as we did for smaller dimensions. Fortunately,
Matlab has a beautiful collection of routines for building matrices.
Consider the following command, which crafts a row of five ones.

>> ones(1,5)

ans =

1 1 1 1 1

If we multiply this vector by 2, we have a row of twos.

>> 2*ones(1,5)

ans =

2 2 2 2 2

Similarly, we can craft a row of four −1’s with this command.

>> -1*ones(1,4)

ans =

-1 -1 -1 -1

Thus, we could have built our 5× 5 matrix M with this command.

>> M=diag(2*ones(1,5))-diag(ones(1,4),-1)-diag(ones(1,4),1)

M =

2 -1 0 0 0

-1 2 -1 0 0

0 -1 2 -1 0

0 0 -1 2 -1

0 0 0 -1 2

Using this technique, we should find it easy to create a tridiagonal
matrix of arbitrary size with 2’s down the main diagonal and −1’s
down the first sub and supra diagonals. Let’s increase N to 20.

>> N=20;

>> h=(pi-0)/(N+1);

>> M=diag(2*ones(1,N))-diag(ones(1,N-1),-1)-diag(ones(1,N-1),1);

>> M=h^(-2)*M;

>> [v,e]=eig(M);

Unlike Maple, the semicolons at the end of each of these commands
is not required. Rather, in Matlab, the semicolon is used to suppress
the output of a command. Try removing the semicolon on the last
command, [v,e]=eig(M) to see the output of this command.
In this case, e is a 20×20 matrix. This can be checked with Matlab’s

size command.

>> size(e)

ans =

20 20
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As we’ve seen in the N = 5 case, the eigenvalues are located on the
diagonal of the matrix e. We can extract the diagonal of eigenvalues
with the multifaceted diag command.

>> d=diag(e);

The variable d is now a vector containing the eigenvalues.

>> size(d)

ans =

20 1

Let’s list the first five eigenvalues using Matlab’s indexing capability.

>> d(1:5)

ans =

0.9981

3.9702

8.8499

15.5282

23.8559

Note that these values are much closer to the predicted eigenvalues 1,
4, 9, 16, and 25.
Clearly, we can continue in this manner, increasing N to create a

finer partition of the interval [0, π] in order to better approximate the
eigenvalues and eigenfunctions of the Sturm-Liouville problem (13.6),
but only at the cost of increased computer time. For example, try
running the algorithm with N = 1000.

>> N=1000;

>> h=(pi-0)/(N+1);

>> M=diag(2*ones(1,N))-diag(ones(1,N-1),-1)-diag(ones(1,N-1),1);

>> M=h^(-2)*M;

>> tic, [v,e]=eig(M); toc

elapsed_time =

69.9030

Matlab provides the construct tic ... toc to enable the user to see
the amount of time required for the included command to complete,
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in this case, approximately 70 seconds.4 Let’s look at the first five
eigenvalues.

>> d=diag(e);

>> d(1:5)

ans =

1.0000

4.0000

8.9999

15.9998

24.9995

These are very close to the predicted eigenvalues 1, 4, 9, 16, and 25.

13.3.4. The Eigenfunctions

Each column of the matrix v contains the eigenvector associated with
the eigenvalue in the corresponding diagonal position of the matrix e.
Each of these eigenvectors is an approximation of the corresponding
eigenfunction of the Sturm-Louville problem.
Note that each eigenvector is a solution of the general equation (13.15),

so that each eigenvector contains approximations y1, y2, . . . , yN to the
eigenfunction only at the points x1, x2, . . . , xN . The eigenvectors do
not contain an approximation of the eigenfunction at x0 nor at xN+1.
However, we have the Dirchlet conditions at each endpoint; that is,

y0 = y(x0) = y(0) = 0,

yN = y(xn) = y(π) = 0.

Consequently, each of the eigenvectors in v needs a zero prepended to
the beginning of the vector, and in addtion, a zero appended to the
end of the vector. We can easily accomplish this amendment for each
eigenvector in the matrix v with the following commands.

>> VV=[zeros(1,N); v; zeros(1,N)];

This command warrants some explanation. The command zeros(1,N)
creates a 1 × N row vector where each entry is a zero. Further,
semicolons delimit rows when building matrices. Thus, the command

4One can greatly improve the performance by taking advantage of Matlab’s sparse
matrix routines. A sparse matrix contains very few nonzero entries. In the case of
matrix M , which is 1000× 1000, the main diagonal contains 1000 nonzero entries,
while the diagonals immediately above and below the main diagonal each contain
999 nonzero entries. A quick calculation reveals that 99.7% of the entries of matrix
M are zeros. Try the command opts.disp=0, followed by the command tic,

[v,e]=eigs(M,20,’SM’,opts); toc to see the improvement in performance. On
our system, the calculation took about 0.49 seconds.
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[zeros(1,N); v; zeros(1,N)] builds a new matrix by creating a first
row with all zeros, followed by the rows of the matrix v, then conclud-
ing by appending another row of zeros. Therefore, each column of VV
now contains a zero as its first entry, followed by an eigenvector of
equation (13.15), then a final zero. In this way, we attach the Dirich-
let conditions at each end of our eigenvector approximation for the
eigenfunction of the Sturm-Liouville problem (13.6).
Now, let’s plot a few of the eigenvector approximations of the eigen-

functions. Note that each column of VV at this point contains entries
y0, y1, . . . yN+1, thus N +2 entries in all. We want to plot these entries
versus x0, x1, . . .xN+1. Therefore, the first task is to create a vector
containing these x-values of the partition on [0, π].
In Matlab, the construct start:increment:finish is used to cre-

ate sequences of numbers beginning with start, ending with finish,
and proceeding in steps of increment. For example, the command

>> 0:0.5:2

ans =

0 0.5000 1.0000 1.5000 2.0000

is used to create a vector of numbers that start at 0, end at 2, proceed-
ing in steps of 0.5. If no increment is used, a default increment of 1 is
ued.

>> 0:5

ans =

0 1 2 3 4 5

The points in our partition are given by the formula xj = jh, which
was earlier computed with h = π/(N + 1). Thus, the command

>> xx=(0:N)*h;

should create a vector containing x0, x1, . . . , xN , then the command

>> xx=[xx,pi];

should append the endpoint of the interval [0, π]. Alternatively, you
might try xx=(0:N+1)*h, but the technique used above helps eliminate
roundoff error at the right endpoint of the interval [0, π].
It is now a simple matter to plot the the approximations of the

eigenfunctions versus xx. For example, the following command was
used to plot the first two eigenfunctions shown in Figure 3.

>> plot(xx,VV(:,[1,2]))

>> grid on

>> xlabel(’x’)

>> legend(’\lambda = 1’, ’\lambda = 4’,4)
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A word of explanation is in order. The syntax VV(:,[1,2]) is Matlab
indexing that some read as “Matrix V V , every row, first and second
columns.” We could just as easily have entered VV(1:N+2,[1,2]),
which calls for rows 1 through N + 2, first and second columns, but
the colon syntax, meaning “every row,” is more convenient.

0 0.5 1 1.5 2 2.5 3

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

x

λ
1
=1

λ
2
=4

Figure 3. Eigenfunctions associated with λ = 1 and λ = 4.

The astute reader will remember that we are expecting the first two
eigenvalue-eigenfunction pairs.

λ1 = 1 ↔ y1(x) = sin x

λ2 = 4 ↔ y2(x) = sin 2x

Both y1(x) = sinx and y2(x) = sin 2x have amplitude 1, but the eigen-
vector approximations in Figure 3 appear to have an amplitude ap-
proximately equal to 0.045. Moreover, the second eigenvector approx-
imation appears to be inverted.
To allay our fears that things are not working as they should, we

need only remember that any scalar multiple of an eigenfunction is
again an eigenfunction. That is, the eigenfunction approximations
pictured in Figure 3 should be scalar multiples of y1(x) = sinx and
y2(x) = sin 2x. To see this, we will scale our eigenvector approxima-
tions, then compare them with y1(x) = sinx and y2(x) = sin 2x.
We wish our first eigenvector approximation to have amplitude 1.

This is easily accomplished by dividing each entry of the eigenvector by
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0 1 2 3
0

0.2

0.4

0.6

0.8

1

x
0 1 2 3

0

0.2

0.4

0.6

0.8

x
Figure 4. Comparing a scalar multiple of the first eigenvector
versus y1(x) = sinx on [0, π].

the magnitude of the largest entry present. The following commands
were used to produce the image on the left in Figure 4.5

>> plot(xx,VV(:,1)/max(VV(:,1)))

>> grid on

>> xlabel(’x’)

For comparison, these commands were used to plot y1(x) = sinx on
the interval [0, π]. This image is shown on the right in Figure 4.

>> plot(xx,sin(xx))

>> grid on

>> xlabel(’x’)

13.4. Neumann Conditions

Let’s revisit the Sturm-Liouville equation (13.6), but this time let’s
attach a Neumann condition at the right endpoint.

(13.16) −y′′(x) = λy(x), y(0) = 0, y′(π) = 0

It is not difficult to show that the eigenvalues and eigenfunctions of the
Sturm-Liouville problem (13.16) are given by

λn = (n− 1/2)
2 and yn(x) = sin((n− 1/2)x),

for n = 1, 2, 3, . . . . Accordingly, the first five eigenvalues should be
0.25, 2.25, 6.25, 12.25, and 20.25.

5Another idea would be to divide each eigenvector by the infimum norm with the
command VV(:,1)/norm(VV(:,1),inf).
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We still have the same Sturm-Liouville equation, −y′′(x) = λy(x),
so we will still use equation (13.11), repeated here for convenience.

−h−2
[

yj−1 − 2yj + yj+1

]

= λyj

Because of the Neumann condition y′(π) = 0, we do not know the
value of the solution at the right endpoint; i.e., we do not know y(π).
Therefore, if we again partition the interval as in Figure 1 with N =
5, we will need to compute y1, y2, . . . , y6. This will necessitate the
addition of an extra equation. With j = 1, 2, . . . , 6,

(13.17)

−h−2
[

y0 − 2y1 + y2

]

= λy1,

−h−2
[

y1 − 2y2 + y3

]

= λy2,

−h−2
[

y2 − 2y3 + y4

]

= λy3,

−h−2
[

y3 − 2y4 + y5

]

= λy4,

−h−2
[

y4 − 2y5 + y6

]

= λy5,

−h−2
[

y5 − 2y6 + y7

]

= λy6.

However, this gives us six equations in eight unknowns. Because of the
Dirichlet condition at the left endpoint of [0, π], we know that

y0 = y(x0) = y(0) = 0,

so that eliminates the unknown y0. However, we will need to obtain an
estimate for y7.
We can use a forward difference estimate for the first derivative,

defined by

y′(x) ≈
y(x+ h)− y(x)

h
.

Using h as the step size in our partition of [0, π], we can write

y′(xj) ≈
y(xj+1)− y(xj)

h
.

Using yj as an approximation of y(xj), we write

y′j =
yj+1 − yj

h
,

or, equivalently,

yj+1 = yj + hy′j.

With j = 6, this gives us y7 = y6 + hy′6. However, because of the
Neumann condition on the right endpoint of [0, π], we know that

y′6 = y′(x6) = y′(π) = 0.

Thus, we get y7 = y6.
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Substituting y0 = 0 and y7 = y6 into the first and last equations of
system (13.17) gives us six equations in six unknowns.

−h−2
[

− 2y1 + y2

]

= λy1,

−h−2
[

y1 − 2y2 + y3

]

= λy2,

−h−2
[

y2 − 2y3 + y4

]

= λy3,

−h−2
[

y3 − 2y4 + y5

]

= λy4,

−h−2
[

y4 − 2y5 + y6

]

= λy5,

−h−2
[

y5 − y6

]

= λy6.

Again, this doesn’t mean much until we see this system in matrix form.

(13.18)















2h−2 −h−2 0 0 0 0
−h−2 2h−2 −h−2 0 0 0
0 −h−2 2h−2 −h−2 0 0
0 0 −h−2 2h−2 −h−2 0
0 0 0 −h−2 2h−2 −h−2

0 0 0 0 −h−2 h−2





























y1

y2

y3

y4

y5

y6















= λ















y1

y2

y3

y4

y5

y6















Note that this matrix equation again has the form Mv = λv. Once
again, finding the eigenvaues and eigenfunctions of the Sturm-Liouville
problem (13.16) has been reduced to finding the eigenvalues and eigen-
vectors of a matrix.
Again, it is helpful to factor out the h−2 from the coefficient matrix

M .

M = h−2















2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 1















We need only make a minor adjust to our Matlab strategy to build this
matrix.

>> M=diag([2*ones(1,5),1])-diag(ones(1,5),-1)-diag(ones(1,5),1)

M =

2 -1 0 0 0 0

-1 2 -1 0 0 0

0 -1 2 -1 0 0

0 0 -1 2 -1 0

0 0 0 -1 2 -1

0 0 0 0 -1 1



LECTURE 13. STURM-LIOUVILLE — NUMERICS 17

The construct [2*ones(1,5),1] creates a vector with five 2’s, then
appends one additional 1, which is exactly what we need on the main
diagonal.
The general system of N + 1 equations has matrix form

(13.19)













2h−2 −h−2 0 · · · 0
−h−2 2h−2 h−2 · · · 0
0 −h−2 2h−2 · · · 0
...

...
...

. . .
...

0 0 0 · · · h−2

























y1

y2

y3

...
yN+1













= λ













y1

y2

y3

...
yN+1













.

Note that we’re solving for y1, y2, . . . , yN+1 this time.
Let’s jump right to the case with N = 1000.

>> N=1000;

>> h=pi/(N+1);

>> M=diag([2*ones(1,N),1])-diag(ones(1,N),-1)-diag(ones(1,N),1);

>> M=h^(-2)*M;

>> tic, [v,e]=eig(M); toc

elapsed_time =

67.3190

Strip the eigenvalues from the main diagonal of e.

>> d=diag(e);

>> d(1:5)

ans =

0.2498

2.2477

6.2437

12.2376

20.2294

Note the close agreement with the exact eigenvalues determined by
λn = (n− 1/2)

2; i.e., 0.25, 2.25, 6.25, 12.25, and 20.25.
The Dirichlet condition y(0) = 0 at the left endpoint requires that

we prepend a zero to each eigenvector. This is easily accomplished by
adding a first row of zeros to the matrix v.

>> VV=[zeros(1,N+1);v];

We create a vector of the mesh points on the partition of [0, π] as before.

>> xx=(0:N)*h;

>> xx=[xx,pi];

We can now plot the eigenvectors in VV versus xx. For example, to plot
the first two eigenvectors, execute the following commands to obtain a
plot similar to that shown in Figure 5.
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Figure 5. The first two eigenfunctions.

>> plot(xx,VV(:,[1,2]))

>> grid on

>> xlabel(’x’)

>> legend(’\lambda_1=0.25’,’\lambda_2=2.25’,2)

In Figure 5, note that each eigenfunction begins at (0, 0). Also,
at the right endpoint, note that each eigenfunction levels, eventually
reaching slope zero, as required by the Neumann condition at the right
endpoint (y′(π) = 0).

13.5. One Final Example

Consider the Sturm-Liouville problem

(13.20) −y′′(x) + 3xy(x) = λy(x), y′(0) = 0, y(π) = 0.

You might note that this has the form −(p(x)y′)′ + q(x)y = λr(x)y,
with p(x) = 1, q(x) = 3x, and r(x) = 1. You might also try your
hand at solving this problem analytically. We will provide a numerical
solution using the same methods as in our previous examples.
Again, if we estimate the second derivative with

y′′(xj) =
y(xj−1)− 2y(xj) + y(xj+1)

h2
,

then the equation −y′′(x) + 3xy(x) = λy(x) becomes

−h−2
[

y(xj−1)− 2y(xj) + y(xj+1)
]

+ 3xjy(xj) = λy(xj).



LECTURE 13. STURM-LIOUVILLE — NUMERICS 19

With yj ≈ y(xj) and a little algebra,

(13.21) −h−2yj−1 + (2h
−2 + 3xj)yj − h−2yj+1 = λyj.

In this example the value of y is unknown at the left endpoint of [0, π],
but known at the right endpoint. Thus, with N = 5, we will want to
compute the value of y at x0, x1, . . . , x5. Consequently, we substitute
j = 0, 1, . . . , 5 in equation (13.21) to obtain six equations in eight
unknowns.

(13.22)

−h−2y−1 + (2h
−2 + 3x0)y0 − h−2y1 = λy0

−h−2y0 + (2h
−2 + 3x1)y1 − h−2y2 = λy1

−h−2y1 + (2h
−2 + 3x2)y2 − h−2y3 = λy2

−h−2y2 + (2h
−2 + 3x3)y3 − h−2y4 = λy3

−h−2y3 + (2h
−2 + 3x4)y4 − h−2y5 = λy4

−h−2y4 + (2h
−2 + 3x5)y5 − h−2y6 = λy5

However, the Dirichlet condition at the right endpoint of [0, π] provides

(13.23) y6 = y(x6) = y(π) = 0.

We need to find an estimate for y−1. We’re given a Neumann condi-
tion at the left endpoint of the interval. We’ll use a backward difference
to estimate the first derivative of y at the left endpoint of [0, π].

y′(x) =
y(x)− y(x− h)

h

Again, h is the step size on our partition of [0, π], so we may write

y′(xj) =
y(xj)− y(xj−1)

h
.

Use yj as an approximation of y(xj) and write

y′j =
yj − yj−1

h
,

or equivalently,

yj−1 = yj − hy′j.

With j = 0, this last equation gives us y−1 = y0 − hy′0. However, the
Neumann condition on the left endpoint of [0, π] provides y ′0 = y′(x0) =
y′(0) = 0, so

(13.24) y−1 = y0.
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Substituting (13.24) and (13.23) into system (13.22), we arrive at six
equations in six unknowns y0, y1, . . . , y5.

(13.25)

(h−2 + 3x0)y0 − h−2y1 = λy0

−h−2y0 + (2h
−2 + 3x1)y0 − h−2y2 = λy1

−h−2y1 + (2h
−2 + 3x2)y1 − h−2y3 = λy2

−h−2y2 + (2h
−2 + 3x3)y2 − h−2y4 = λy3

−h−2y3 + (2h
−2 + 3x4)y3 − h−2y5 = λy4

−h−2y4 + (2h
−2 + 3x5)y5 = λy5

This system can be written in the matrix form My = λy, with coeffi-
cient matrix
















h−2 + 3x0 −h−2 0 0 0 0
−h−2 2h−2 + 3x1 −h−2 0 0 0
0 −h−2 2h−2 + 3x2 −h−2 0 0
0 0 −h−2 2h−2 + 3x3 −h−2 0
0 0 0 −h−2 2h−2 + 3x4 −h−2

0 0 0 0 −h−2 2h−2 + 3x5

















.

It is helpful to factor out h−2. Then the coefficient matrix becomes

h−2

















1 + 3h2x0 −1 0 0 0 0
−1 2 + 3h2x1 −1 0 0 0
0 −1 2 + 3h2x2 −1 0 0
0 0 −1 2 + 3h2x3 −1 0
0 0 0 −1 2 + 3h2x4 −1
0 0 0 0 −1 2 + 3h2x5

















.

As one might expect, building this matrix in Matlab is a bit more
involved, but you will see that it is not difficult. We will again work
with N = 5.

>> N=5;

Determine the step size of the partiton 13.3.2.

>> h=pi/(N+1);

Now, determine the points of the partition. Note that the values x0,
x1, . . . , x5 run down the main diagonal of the coefficient matrix, so
those are the ones we need at the moment.

>> xx=(0:N)*h;

Let’s first create a diagonal matrix with main diagonal containing a 1,
followed by five 2’s.

>> diag([1,2*ones(1,N)])

ans =

1 0 0 0 0 0
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0 2 0 0 0 0

0 0 2 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2

We will need to add to this to a matrix having entries 3h2x0, . . . , 3h
2x5

on its main diagonal. Again, this is an easy construct using Matlab’s
diag command. Remember that the vector xx already contains the
entries x0, . . . , x5.

>> diag(3*h^2*xx)

ans =

0 0 0 0 0 0

0 0.4306 0 0 0 0

0 0 0.8613 0 0 0

0 0 0 1.2919 0 0

0 0 0 0 1.7226 0

0 0 0 0 0 2.1532

You might want to check these entries with a calculator.
We can use these ideas, along with some former ideas, to construct

our coefficient matrix M .

>> M=diag([1,22*ones(1,N)]);

>> M=M+diag(3*h^2*xx);

>> M=M-diag(ones(1,N),-1)-diag(ones(1,N),1)

M =

1.0000 -1.0000 0 0 0 0

-1.0000 2.4306 -1.0000 0 0 0

0 -1.0000 2.8613 -1.0000 0 0

0 0 -1.0000 3.2919 -1.0000 0

0 0 0 -1.0000 3.7226 -1.0000

0 0 0 0 -1.0000 4.1532

Let’s skip right to the case we’ve used before and set N = 1000. It
is a simple matter to repeat the steps taken above with this new value
of N .

>> N=1000;

>> h=pi/(N+1);

>> xx=(0:N)*h;

>> M=diag([1,2*ones(1,N)]);

>> M=M+diag(3*h^2*xx);

>> M=M-diag(ones(1,N),-1)-diag(ones(1,N),1);

In addition, we want to remember to scale M by h−2.
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>> M=h^(-2)*M;

Finally, find the eigenvalues and eigenvectors.

>> [v,e]=eig(M);

As we see in system (13.25), in this case our eigenvectors contain
the approximations y0, . . . , yN at the points x0, . . . , xN . The Dirichlet
condition at the right endpoint of the solution interval [0, π] requires
that yN+1 = y(xN+1) = y(π) = 0. Therefore, we append a row of zeros
to the eigenvector matrix v.

>> VV=[v;zeros(1,N+1)];

To obtain plots of the eigenfunctions, we must append xN+1 = π to
our partition of [0, π].

>> xx=[xx,pi];

We can now plot the first two eigenfunctions. The following commands
were used to create the eigenfunctions shown in Figure 6.

>> plot(xx,VV(:,[1,2]))

>> xlabel(’x’)

>> legend(’\lambda_1’,’\lambda_2’,4)

>> grid on
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Figure 6. The first two eigenfunctions for −y′′(x) + 3xy(x) = λy(x).

Note that both eigenfunctions in Figure 6 satisfy the Dirichlet con-
dition y(π) = 0 at the right endpoint of the interval [0, π]. Further-
more, note that the Neumann condition y′(0) = 0 is satisfied at the left
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endpoint of the solution interval, as both eigenfunctions seem to have
tangent lines with slope zero at x = 0.
It’s interesting to examine eigenfunctions two at a time and note

that they display the same endpoint conditions described in the previ-
ous paragraph. For example, the following code will plot the third and
fourth eigenfunctions, as shown in Figure 7.

>> plot(xx,VV(:,[3,4]))

>> xlabel(’x’)

>> legend(’\lambda_3’,’\lambda_4’)

>> grid on
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Figure 7. Third and fourth eigenfunctions of −y′′(x) + 3xy(x) = λy(x).

13.6. Automating the Solution of Sturm-Liouville

Problems

One can take the ideas developed in this paper and automate the pro-
cess of extracting the eigenvalues and eigenfunctions of the Sturm-
Liouville problem. Dr. John Polking from Rice University has done
this in a suite of Matlab programs. The programs in the suite are
named: sls, slview, and slseries.
The first of these programs, sls, will find the eigenvalues and eigen-

functions of an arbitrary regular Sturm-Liouville problem on the inter-
val I = [a, b], having the form

(13.26) −(p(x)y′)′ + q(x)y = λr(x)y,
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with boundary conditions

(13.27)
α1y

′(a) + α1y(a) = 0,

β1y
′(b) + β2y(b) = 0.

The second program in the suite, slview, allows the user to view the
output of the sls routine. This routine will plot the eigenfunctions of
the Sturm-Liouville problem, and an optional parameter K allows the
users to view the eigenfunctions in groups of K. The default behavior
is to view the plots of consecutive pairs of eigenfunctions.
The third and final routine in the suite, slseries, allows the user

to view the expansion of an initial condition f(x) in terms of the eigen-
functions of the Sturm-Liouville problem.
These and other programs written by Dr. Polking are avalaible for

download at:

http://www.math.hmc.edu/%7Eajb/PCMI/polking/polking.html


