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14.1. Observations about timpani playing

A timpani (or kettledrum) is a percussive instrument consisting of a circular drumhead
(usually plastic, but in older times, an animal skin) that is tautly stretched over a metal
bowl. As a first approximation, the vibrations of the timpani’s drumhead can be modelled
by the wave equation,

utt = c2∇2u,

where c is the speed of waves travelling on the drumhead. The constant c is directly related
to the tension of the drumhead and the corresponding pitch that is generated by hitting the
drumhead with a mallet, and can be adjusted using a foot pedal. The characteristic sound
of the timpani is determined by its vibrational modes and their corresponding frequencies.
Any timpani player will tell you that the proper place to strike the drumhead is not the

center of the drumhead, but rather a spot somewhere about one-sixth of the diameter away
from the edge of the drumhead. The most common timpanis have a diameter between 23
to 29 inches, so that means striking the timpani about 4 to 5 inches in from the edge of the
drumhead. Striking the drumhead in the center produces a sound that is somewhat hollow.
In this lecture, we will give some mathematical explanations for why this occurs.
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14.2. Solution to the wave equation via separation of variables

As we are describing the vibrations of a circular membrane, it is convenient to use polar
coordinates. Let the displacement of the membrane be u = u(r, θ, t), in which case the wave
equation can be more explicitly written as

(14.1) utt = c2
[

urr +
1

r
ur +

1

r2
uθθ

]

.

(Refer to Prof. Tolosa’s Lecture 11.) Since the drumhead is tautly held down, we impose
Dirichlet conditions at the boundary of the drumhead:

u(a, θ, t) = 0,

where a is the radius of the drumhead. Later on, we will also need two less-obvious boundary
conditions: that the displacement is finite at the origin (r = 0), and that the displacement is
a 2π-periodic function in θ (refer again to Lecture 11). To obtain u explicitly, we would also
need to know the initial displacement, u(r, θ, 0), and initial velocity, ut(r, θ, 0). However,
our goal is simply to understand more about the vibrational modes (eigenfunctions) of
the circular membrane, so these aren’t necessary; just obtaining the general solution using
separation of variables will suffice.
Let’s make the usual separation of variables ansatz that u(r, θ, t) = R(r)H(θ)T (t), and

substitute this into (14.1). The result is a set of three ordinary differential equations,

H ′′ + n2H = 0,(14.2a)

T ′′ + c2λ2T = 0,(14.2b)

r2R′′ + rR′ + (λ2r2 − n2)R = 0,(14.2c)

where the separation constants are λ2 and n2.
As we saw in Lecture 11, the first equation (14.2a) has 2π-periodic solutions only if n is

an integer, so we restrict n = 0, 1, 2, . . . , and define

Hn(θ) = An cos(nθ) +Bn sin(nθ).

The second equation (14.2b) has the general solution

T (t) = α cos(cλt) + β sin(cλt),

assuming λ ≥ 0, which means that the frequency of any particular vibrational mode is
2π/(cλ).
The third ODE (14.2c) is related to Bessel’s equation of order n (not to be confused with

the order of the differential equation itself) and can be written in Sturm-Liouville form:

(14.3)
d

dr
[rR′(r)]−

n2

r
R(r) + λ2rR(r) = 0.

Please refer to equation (1.3) from Lecture 9. This equation should be solved over the interval
0 ≤ r ≤ a subject to the conditions that R(0) be finite and R(a) = 0. Because we are solving
this equation on the interval 0 ≤ r ≤ a and the functions r and r−1 are not positive at the
endpoints of this interval, this boundary-value problem is not a regular Sturm-Liouville
eigenvalue problem but rather a singular Sturm-Liouville eigenvalue problem. Furthermore,
Bessel’s equation is linear and has a regular singular point at r = 0, so we expect that at
least one of the linearly independent solutions to this equation has a singularity at r = 0.
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Nevertheless, this eigenvalue problem still has a complete set of orthogonal eigenfunctions.
From (14.3), we see that the weight function is r, so inner products should be computed as
integrals over the interval 0 ≤ r ≤ a with an extra factor of r. (This extra factor accounts
for the fact that the area of a circle is proportional to the square of its radius.)
The general solution to (14.2c) is

R(r) = CJn(λr) +DYn(λr),

where Jn(z) and Yn(z) are Bessel’s functions of the first and second kind, respectively. For
more information, refer to the handout on Bessel functions, and Section 14.5. Bessel’s
functions of the second kind have singularities at r = 0, so for R(0) to remain finite we must
choose D = 0. The other boundary condition R(a) = 0 requires that

CJn(λa) = 0.

We do not want C = 0 or we will have the trivial solution, so we require Jn(λa) = 0. Even
though the zeros of Jn(z) are not evenly spaced like the sine and cosine functions, they can
be calculated. Let us denote zmn to be the mth positive root of Jn(z), as shown in the figure
below. Table 14.2 lists some values of zmn.
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Figure 14.1. Graphs of a few Bessel functions of the first kind with their zeros marked.

zmn n = 0 n = 1 n = 2 n = 3
m = 1 2.4048 3.8317 5.1356 6.3802
m = 2 5.5201 7.0156 8.4172 9.7610
m = 3 8.6537 10.173 11.620 13.015
m = 4 11.792 13.324 14.796 16.223

Table 14.2. Approximate locations of the zeros of Bessel functions of the first kind: zmn

denotes the mth positive root of Jn(z).

Armed with the zeros of Jn(z), we define

λmn =
zmn

a
,
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for m = 1, 2, 3 . . . , and n = 0, 1, 2, . . . . The product solutions that describe the vibrational
modes of the circular drumhead are therefore

umn(r, θ, t) = Jn

(zmnr

a

)

[Amn cos(nθ) +Bmn sin(nθ)] [αmn cos(cλmnt) + βmn sin(cλmnt)] .

To solve explicitly for u, one needs to create a proper superposition (some of the constants
above may be superfluous) of product solutions and determine constants from initial condi-
tions using orthogonality conditions. This is left as an exercise to the reader in Problems 2
and 3.
Because of the trigonometric identity

α cosφ+ β sinφ =
√

α2 + β2 cos(φ+ φ0),

where φ0 is a phase shift, we recognize that the product solution umn above can be written
in a more compact form. If we are only after the qualitative behavior of each vibrational
mode, we can ignore the angular and temporal phase shift by defining

vmn(r, θ, t) = Jn

(zmnr

a

)

cos(nθ) cos

(

czmnt

a

)

,

for m = 1, 2, 3 . . . , and n = 0, 1, 2, . . . . Plots of these vibrational modes appear at the end
of this handout. Each of these vibrational modes has a frequency of 2πa/(czmn). When the
timpani is struck, it is the combination of all of the vibrational modes and their corresponding
frequencies that contributes to its characteristic sound (timbre).

14.3. Axisymmetric versus nonaxisymmetric cases

Now, we are in a position to discuss the differences between striking the timpani in the
center and off center. If the timpani is struck exactly in the center, and the impact of the
mallet creates an initial displacement and velocity that is axisymmetric (depending only
on r), then one can assume that the solution remains axisymmetric for all time. In other
words, if u(r, θ, 0) and ut(r, θ, 0) are independent of θ, then u(r, θ, t) is also independent of
θ.
Separation of variables in the axisymmetric case is a bit easier, with the general solution

taking the form

u(r, t) =
∞
∑

m=1

J0

(zm0r

a

)

[αm cos(cλm0t) + βm sin(cλm0t)] .

Therefore, we see that only a subset of the vibrational modes from the nonaxisymmetric
case are excited (those corresponding to n = 0). The allowable vibrational frequencies are
similarly limited, which is why the sound of the timpani is hollow when the timpani is struck
in the center.
The same conclusion can be obtained by looking at the vibrational modes of the non-

axisymmetric case (at the end of this handout). Notice that for n ≥ 1, each vibrational
mode has node lines (i.e. curves on the drumhead for each vibrational mode that experience
no displacement) that pass through the center. So, if the timpani is struck at the center,
even if the initial velocity and displacement are nonaxisymmetric, none of the vibrational
modes for n ≥ 1 can be excited.
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The purpose of striking the timpani about one-sixth of the diameter away from the
edge of the drumhead is to excite the m = 1, n = 1 vibrational mode. It turns out that
this vibrational mode, along with the other preferentially excited modes, produce the most
pleasing sound. These observations can be found in Lord Rayleigh’s classic book “The
Theory of Sound” (1877).

14.4. References and extensions

• In pratice, the actual sound that we hear from a timpani is different from that
predicted by the analysis above. There are several important factors that have
been neglected. First, and most importantly, the motion of the timpani is damped,
which changes the vibrational modes and their frequencies. (Refer to Lecture 7 by
Profs. Vajiac and Tolosa.) Sound waves travelling from the timpani to your ear
also experience damping. Second, there are small nonlinear effects (such as surface
tension), which exert their own preference for certain modes by transferring energy
from one vibration mode to another. Third, the tension of the drumhead is not
uniform across the entire drumhead (c is not really constant). Furthermore, there is
a coupling between the vibrations of the membrane, the vibrations of the membrane
bowl, and the vibrations of the air particles that eventually reach your ear. To learn
more about musical acoustics, try “The Acoustical Foundations of Music” by John
Backus and “Fundamentals of Musical Acoustics” by Arthur Benade.

• Consider the wave equation on an arbitrary planar domain Ω:

utt = c2∇2u.

Regardless of what Ω looks like, one can still separate the temporal part of the
solution from the spatial part by assuming u = T (t)Φ, where Φ is a function of all
the spatial variables (for example, x, y, z, or r, θ). Substituting this ansatz into the
wave equation, we obtain

T ′′(t) + c2λ2T (t) = 0

∇2Φ + λ2Φ = 0.(14.4a)

Equation (14.4) is known as Helmholtz’s equation. The domain Ω and the bound-
ary conditions specified on ∂Ω determine the eigenfunctions Φ and the eigenvalues
λ2. (See Problems 1 and 5.) If we are thinking about vibrating membranes like
drumheads, then the eigenfunctions are the vibrational modes and the eigenvalues
determine their associated frequencies.
One very natural question to ask is, whether the inverse problem is solvable. In

other words, if we are given the vibrational frequencies of a drumhead, can we deter-
mine the shape of the membrane? Marc Kac posed and answered this question in a
brilliantly written paper “Can one hear the shape of a drum?” (Amer. Math. Monthly
73, 1966, no. 4, pages 1–23).

• Separation of variables can be used to determine these vibrational modes in situa-
tions where the geometry of the membrane is simple enough, but most real-world
problems do not involve simple geometries. What can be done in these situations?
For complicated domains composed of simpler pieces (like a square joined with a
semicircle), one can analytically obtain bounds on the eigenvalues. (See “Partial
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Differential Equations: An Introduction” by Walter Strauss.) If the shape of the
membrane is very close to one for which separation of variables works, regular per-
turbation techniques can give analytic approximations to the eigenfunctions and
eigenvalues. (See “Perturbation Methods” by E. J. Hinch.) And of course, numer-
ical methods can be used, as we learned from Prof. Arnold in yesterday’s lecture.
Complicated geometries in two- or three-dimensions are usually best handled using
finite element numerical methods.

14.5. Properties of Bessel functions

First, we show how equation (14.2c) can be transformed to Bessel’s equation. Let y(x) =
R(r) where x = λr. Using the chain rule,

dR

dr
=

dy

dx

dx

dr
=

dy

dx
λ.

This change of variables changes (14.2c) to Bessel’s equation of order n (which is not neces-
sarily integral),

(14.5) x2y′′ + xy′ + (x2 − n2)y(x) = 0.

This linear ODE has a regular singular point at x = 0. Therefore, the two linearly indepen-
dent solutions to this equation can be obtained using a Frobenius series expansion,

(14.6) y(x) = xα

∞
∑

k=0

akx
k,

where α is some real number to be determined. Substituting (14.6) and its derivatives into
(14.5), we obtain

∞
∑

k=0

ak(k + α)(k + α− 1)xk+α +
∞
∑

k=0

ak(k + α)xk+α +
∞
∑

k=0

akx
k+α+2 − n2

∞
∑

k=0

akx
k+α = 0.

We wish to identify the coefficient of each power of x, so we renumber the third term above
so that all the powers of x match, then we take out the k = 0 and k = 1 terms out of all
remaining terms, and regroup.

a0(α
2 − n2)xα + a1((α + 1)

2 − n2)xα+1 +
∞
∑

k=2

[

ak((k + α)2 − n2) + ak−2

]

xk+α = 0

Since the right-hand side of the equation above is zero, the only way for the equation to be
true is for the coefficient of every power of x to also be zero. Therefore,

a0(α
2 − n2) = 0(14.7a)

a1((α + 1)
2 − n2) = 0(14.7b)

ak((α + k)2 − n2) = −ak−2 for k = 2, 3, . . . .(14.7c)

Since α is chosen so that xα is the first term of the series, we should not have a0 be zero,
so the only way for (14.7a) to be satisfied is if α2 − n2 = 0. This equation is known as
the indicial equation, and it implies that α = ±n. Notice that this choice of α necessarily
implies that a1 = 0, and since the recurrence relation (14.7c) links every other coefficient
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ak together, a1 = 0 implies that ak = 0 for all odd k. Therefore, each root of the indicial
equation leads to a linearly independent solution of Bessel’s equation except in the case
when n is an integer.
When n is an integer, choosing α = |n| gives one of the linearly independent solutions.

However, choosing α = −|n| does not give a second linearly independent solution because
the recurrence relation (14.7c) leads to a division by zero when calculating a2|n|. In this
situation, the second linearly independent solution can be determined by reduction of order.
(See “Advanced Mathematical Methods for Scientists and Engineers” by Bender and Orszag
for a complete treatment of Frobenius series.)
For the purposes of the current discussion, just keep in mind these two facts. First,

Bessel’s functions of the first and second kind are defined as the solutions to a linear second-
order differential equation in the same way that the sine and cosine functions are the two
linearly independent solutions of the linear oscillator equation. They may not be as com-
monly used as the sine and cosine functions, but their values and zeros are just as calculated
or tabulated, especially with a computer. Furthermore, many of the trigonometric identities
have analogues with their Bessel functions cousins.
Second, the indicial equation tells us the leading behavior of the Bessel functions near

x = 0. The Bessel function of the first kind is defined as the linearly independent solution
corresponding to α = |n|, so Jn(x) behaves like x

|n| near x = 0 (since that is the first term
of the power series). For non-integral n, the Bessel function of the second kind of order n,
Yn(x), behaves like x

−|n| near x = 0. And for integral n, the Yn(x) also has x
−|n| as its first

power series term, but has a logarithmic term (lnx) as well. This means that for any n, the
Bessel function of the second kind always diverges as x→ 0. As a result, most problems in
polar or spherical coordinates whose domains include the origin usually involve discarding
Bessel functions of the second kind.

14.6. Challenge Problems for Lecture 14

Problem 1. Determine the vibrational modes of a timpani with a rectangular drumhead.
In other words, find the product solutions for the wave equation

utt = c2∇2u

in the rectangle 0 ≤ x ≤ L and 0 ≤ y ≤ W , subject to homogeneous Dirichlet boundary
conditions along all four sides of the rectangle.

Problem 2 (Axisymmetric case). Suppose u(r, θ, 0) = f(r) is the initial displacement of a
timpani’s drumhead (with radius a), and that the drumhead has zero initial velocity. Solve
for the displacement, u(r, θ, t), showing how all constants are calculated from f .

Problem 3 (Nonaxisymmetric case). Suppose u(r, θ, 0) = f(r, θ) is the initial displacement
of a timpani’s drumhead (with radius a), and that the drumhead has zero initial velocity.
Solve for the displacement, u(r, θ, t), showing how all constants are calculated from f .

Problem 4. Once you’ve done either of the previous problems, create an animation of your
solution to the wave equation for an initial condition of your choice.

Problem 5. Determine and discuss the properties of the vibrational modes of an annular
membrane. (Hint: You’ll need to use both Jn(z) and Yn(z).)


