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LECTURE 5
The Diffusion Equation and Fourier Series

1.1. Outline of Lecture

• Separation of variables for the Dirichlet problem
• The separation constant and corresponding solutions
• Incorporating the homogeneous boundary conditions
• Solving the general initial condition problem

1.2. Solving the Diffusion Equation- Dirichlet prob-
lem by Separation of Variables

In lecture 2, we derived the homogeneous Dirichlet problem for the
diffusion equation. This equation, also called the Heat Equation,
governs the heat distribution in a finite metal bar of length π, where
we keep the endpoints at a fixed temperature, in our case 0. The initial
temperature at time t = 0 is given by f(x). We derived the following
conditions:

The Dirichlet Problem for the Diffusion Equation
(Homogeneous Boundary Conditions)

ut = κuxx 0 < x < π, t > 0 DE

u(0, t) = 0 u(π, t) = 0 t > 0 BC

u(x, 0) = f(x) 0 < x < π, IC
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In lecture 2, we saw a few solutions to this system, but we didn’t
have a systematic way of solving the problem given a particular f(x).
In this lecture, we will discuss a method to solve the equation for
(essentially) any initial f(x).

1.2.1. A Solution to the Homogeneous Dirichlet Problem

In 1807 Jean Baptiste Joseph Fourier caused a big stir when he man-
aged to solve a problem of heat dispersion using what are now called
Fourier series. We will use the method he developed to solve our ho-
mogeneous Dirichlet problem.

When solving a differential equation, it is frequently advantageous
to first look for special solutions that might be easier to find then the
general case. Fourier’s first step was to look for solutions in the special
form

(1.1) u(x, t) = X(x)T (t).

Plugging this form into the differential equation ut = κuxx, we get

(1.2) X(x)T ′(t) = κX ′′(x)T (t)

and dividing by κX(x)T (t) we find

(1.3)
T ′(t)

κT (t)
=

X ′′(x)

X(x)
.

Notice that the left hand side is a function of t alone, while the
right is a function of x only. This implies that both sides must indeed
be constant!

Call this constant −λ. It is known as the separation constant.
The reason for the negative sign in front of the λ will be apparent
shortly.

Thus we have

(1.4)
T ′(t)

κT (t)
=

X ′′(x)

X(x)
= −λ.

We can separate this equation into two equations, one involving
only x, one involving only t:

T ′(t)

κT (t)
= −λ,

and
X ′′(x)

X(x)
= −λ.
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Each of these equations is now an ordinary differential equation,
and thus we can draw on the theory of ordinary differential equations
to solve them. The first equation,

T ′(t) = −λκT (t)

has the solution
T (t) = Ce−λκt.

Note that we expect the temperature to remain finite as time goes
to infinity, and thus the exponent to be negative. Thus λ should be
non-negative. (Hence the choice of −λ earlier.)

The ordinary differential equation in x,

X ′′(x) = −λX(x), λ ≥ 0,

has the solution

X(x) = A cos(
√

λx) + B sin(
√

λx)

for λ > 0, and
X(x) = Ax + B

for λ = 0.
Putting these back together, we find that

(1.5)
u(x, t) = Ce−λκt

(
A cos(

√
λx) + B sin(

√
λx)

)
λ ≥ 0

u(x, t) = C(Ax + B) λ = 0

solve the diffusion equation, though they do not in general satisfy the
boundary or initial conditions.

1.3. Incorporating the homogeneous boundary con-
ditions

We wish u(x, t) to satisfy the homogeneous boundary conditions u(0, t) =
u(π, t) = 0. In the case where u(x, t) = C(Ax + B), this forces
u(x, t) = 0. This is the trivial solution, and we will thus ignore it
from now on.

In the case where

u(x, t) = Ce−λκt
(
A cos(

√
λx) + B sin(

√
λx)

)
,

u(0, t) = Ce−λκtA.

Thus to have u(0, t) = 0 we must have A = 0. Thus

u(x, t) = Ce−λκtB sin(
√

λx).

To satisfy u(π, t) = 0, we must choose λ such that sin(
√

λπ) = 0. As
sin(x) = 0 exactly when x = nπ, n = 0, 1, 2, 3, ..., this means that
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(1.6) λ = n2 n = 0, 1, 2, 3, ...

To summarize, we now have a whole family of functions which sat-
isfies both the differential equation, and the boundary values, namely

u(x, t) = De−n2κt sin(nx) n = 1, 2, 3, ...

where I’ve combined the constants B and C into one constant called
D.
These functions have initial value

u(x, 0) = D sin(nx).

Thus we now know how to solve the Dirichlet problem for the homo-
geneous diffusion equation whenever the initial condition is

f(x) = D sin(nx).

1.4. The solution for general f(x)

Sums of solutions to the homogeneous problem will again be solutions.
Thus, for example, the solution to

ut = κuxx 0 < x < π, t > 0 DE

u(0, t) = 0 u(π, t) = 0 t > 0 BC

u(x, 0) = 5 sin 3x + 2.7 sin 100x 0 < x < π, IC

is given by

u(x, t) = 5e−32κt sin(3x) + 2.7e−1002κt sin(100x).

What about all the other possible initial conditions?

Fourier’s discovery : Any reasonable function on [0, π] can be
written as a sum of sin(nx)’s!!

We will not prove this claim here, but we will just assume that it is
true for now i.e. we will assume that for a given initial value f(x) we
can write

f(x) =
∞∑

n=1

an sin(nx).

This is called a Fourier Series. The numbers an are called the Fourier
Coefficients of f .

Thus, the solution to the general system
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ut = κuxx 0 < x < π, t > 0 DE

u(0, t) = 0 u(π, t) = 0 t > 0 BC

u(x, 0) = f(x) 0 < x < π, IC

is given by

u(x, t) =
∞∑

n=1

ane
−n2κt sin(nx).

Remark. Strictly speaking, we need to formally prove that this series
converges, and indeed has the initial value f(x). This proof is non-
trivial, and we will not do it here.

1.4.1. How to calculate the Fourier Coefficients

We will make use of the following fact, the proof of which is left as an
exercise:

The orthogonality condition∫ π

0

sin(nx) sin(mx)dx =

{
0 n 6= m
π
2

n = m

To calculate the Fourier coefficients, start with

f(x) =
∞∑

n=1

an sin(nx).

Multiply both sides by sin(mx) and integrate. We get

∫ π

0

f(x) sin(mx)dx =

∫ π

0

∞∑
n=1

an sin(nx) sin(mx)dx =
∞∑

n=1

an

∫ π

0

sin(nx) sin(mx)dx.

Because of the orthogonality condition, all the terms in the sum are 0
except when n = m, in which case we get π

2
. Thus

∞∑
n=1

an

∫ π

0

sin(nx) sin(mx)dx = am
π

2
!

Thus the formula to calculate the Fourier Coefficients is

am =
2

π

∫ π

0

f(x) sin(mx)dx m = 1, 2, 3, ... .
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1.5. Challenge Problems for Lecture 5

Problem 1. Use Maple to graph the solution to the homogeneous
Dirichlet problem for the diffusion equation with initial condition f(x) =
(sin(x))2 on [0, π].

Problem 2. Rework the solution to the homogeneous Dirichlet prob-
lem for a bar of length L instead of length π. That is, solve

Ut = κUxx 0 < x < L, t > 0 DE

U(0, t) = 0 U(L, t) = 0 t > 0 BC

U(x, 0) = f(x) 0 < x < L. IC

Problem 3. In the above, we considered homogeneous Dirichlet bound-
ary conditions, i.e.

u(0, t) = 0 u(π, t) = 0 t > 0.

We can also consider Neumann boundary conditions,

ux(0, t) = 0 ux(π, t) = 0 t > 0.

These correspond to a metal rod where the ends are insulated, so
there is no heat flowing out of (or into) the bar. The complete system
of equations for the Neumann problem reads:

ut = κuxx 0 < x < π, t > 0 DE

ux(0, t) = 0 ux(π, t) = 0 t > 0 BC

u(x, 0) = f(x) 0 < x < π, IC

Solve this system for f(x) = 2+3 cos(2x) using separation of variables.
Plot the solution in Maple. What happens as t→∞?

Problem 4. Solve the Dirichlet problem when the boundary conditions
are not homogeneous. That is, solve it for

Ut = κUxx 0 < x < L, t > 0 DE

U(0, t) = a U(L, t) = b t > 0 BC

U(x, 0) = f(x) 0 < x < L. IC

Hint: First find a simple solution g(x) which satisfies the DE and the
BC.


