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The Convergence of Fourier Series

6.1. Outline of Lecture

• Back in the 19th Century. . .
• Fourier Series: The Basics
• Examples
• Other Intervals
• Coefficients and their Decay
• Linear Algebra to the Rescue: L2

• The Many Faces of Convergence
• The Way Things Are

6.2. Back in the 19th Century. . .

‘All is number’, said Pythagoras, by which he meant that the sounds we
hear are built from simpler, more basic frequencies. At the start of the
19th century Fourier explained how actually to decompose a function
into simple sine waves, a process that relates neatly to the old Greek
assertion. Fourier’s method was very simple to apply, and very difficult
to justify rigorously, so much so that many of his contemporaries did
not believe his results. As you have seen in the previous lecture, he used
his method to offer a solution to the problem of heat propagation on a
metal bar. Here we will be concerned with Fourier series themselves,
their behavior, aspects of their convergence, etc.
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6.3. Fourier Series: The Basics

To fix ideas we will work over the interval [−π, π], and deal with varia-
tions later. Fourier’s setup is that given a function f defined over that
interval, it is possible to write it as a (possibly infinite) linear combi-
nation of the ‘pure’ waves 1, cos(x), cos(2x), . . . , sin(x), sin(2x), etc,
so that

(6.1) f(x) =
A0

2
+
∞∑
n=1

An cos(nx) +Bn sin(nx).

Soon it will become clear why we have divided the zeroth coefficient
by 2.

For the moment let’s believe (6.1), and see how to compute the
coefficients An, Bn. The key here are the following formulas, called
orthogonality relations.

Exercise 1. Show that if m, n are non-negative integers, and m 6= n,
then ∫ π

−π
cos(nx) cos(mx) dx = 0,

∫ π

−π
sin(nx) sin(mx) dx = 0.

Also, even if we drop the restriction m 6= n,∫ π

−π
cos(nx) sin(mx) dx = 0.

Exercise 2. Show that if n is a positive integer, then∫ π

−π
cos2(nx) dx =

∫ π

−π
sin2(nx) dx = π.

Without worrying about rigor, let’s follow Fourier and obtain for-
mulas for the coefficients. The coefficient A0 is the simplest to find:
integrate (6.1) from −π to π to get∫ π

−π
f(x) dx =

∫ π

−π

A0

2
dx+

∞∑
n=1

{
An

∫ π

−π
cos(nx) dx+Bn

∫ π

−π
sin(nx) dx

}
.

The series on the right vanishes, and we find that

A0 =
1

π

∫ π

−π
f(x) dx.
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We do the same thing to compute, say, Bm, except that first we multiply
(6.1) through by sin(mx). We get∫ π

−π
f(x) sin(mx) dx =∫ π

−π

A0

2
sin(mx) dx+

∞∑
n=1

An

∫ π

−π
cos(nx) sin(mx) dx+Bn

∫ π

−π
sin(nx) sin(mx) dx.

What is important to notice is that all of the integrals on the right
side vanish, except for the one multiplying Bm. The equation for Bm

becomes

(6.2) Bm =
1

π

∫ π

−π
f(x) sin(mx) dx m = 1, 2, 3, . . . .

Likewise the formula for Am is

(6.3) Am =
1

π

∫ π

−π
f(x) cos(mx) dx m = 0, 1, 2, . . . .

(Because A0 appears in (6.1) divided by 2, the above formula for Am
also works for A0.)

Formulas (6.2) and (6.3) allow us to compute the Fourier coefficients
of f . We postpone any discussion about convergence until Section 6.6.

One last important point: Even though f is defined only on [−π, π],
the right-hand side of (6.1) is 2π-periodic, so we could view f as being
defined over the whole line, but 2π-periodic as well.

6.4. Examples

For our first example we consider f(x) = x over the interval [−π, π].
Clearly A0 = 0, and for n ≥ 1

An =
1

π

∫ π

−π
x cos(nx) dx =

1

π

{
x sin(nx)

n

∣∣∣∣π
−π
−
∫ π

−π

sin(nx)

n
dx

}
= 0.

Exercise 3. If f is an odd function (f(x) = −f(−x) for all x), show
that An = 0.

For n ≥ 1 we obtain

Bn =
1

π

∫ π

−π
x sin(nx) dx =

1

nπ

{
−x cos(nx)|π−π +

∫ π

−π
cos(nx) dx

}
=

(−1)n+1 · 2
n

.
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So, if this Fourier series converges, we obtain, for x ∈ [−π, π],

x =
∞∑
n=1

(−1)n+1 · 2
n

sin(nx).

For our second example let’s take f(x) = x2.

Exercise 4. Show that if f is even (f(x) = f(−x) for all x), then
Bn = 0.

Since x2 is even we only need to compute An:

A0 =
1

π

∫ π

−π
x2 dx =

2

3
π2,

and for n ≥ 1

An =
1

π

∫ π

−π
x2 cos(nx) dx

=
1

nπ

{
x2 sin(nx)

∣∣π
−π −

∫ π

−π
2x sin(nx) dx

}
=

(−1)n · 4
n2

.

As before, if we do have convergence, then, for x ∈ [−π, π],

x2 =
π2

3
+
∞∑
n=1

(−1)n · 4
n2

cos(nx).

6.5. Other Intervals

The first variation on the above is to consider intervals of the form
[−l, l]. The trick is to rescale the problem: if f is defined for x ∈ [−l, l],
we define g by setting g(xπ/l) = f(x); then g is defined over [−π, π],
and

f(x) = g
(xπ
l

)
=
A0

2
+
∞∑
n=1

An cos
(nπx

l

)
+Bn sin

(nπx
l

)
,

where An and Bn are the coefficients for the function g.

Exercise 5. If an and bn are the coefficients for the function f , show
that

an = An =
1

l

∫ l

−l
f(x) cos

(nπx
l

)
dx,

bn = Bn =
1

l

∫ l

−l
f(x) sin

(nπx
l

)
dx.
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The second main variation occurs when we consider half-intervals of
type [0, l]. Here we can just extend f to the whole interval [−l, l], and
obtain the Fourier series of the extension. If we do have convergence,
then the Fourier series we obtained will be equal to f on the half-
interval. Of course, we want to extend f in a sensible way. The two
standard ways of doing it are by extending f to be an even function,
or an odd function.

Exercise 6. Show that if f is extended to be an odd function, then
An = 0, and

Bn =
2

l

∫ l

0

f(x) sin
(nπx

l

)
dx.

Exercise 7. Show that if f is extended to be an even function, then
Bn = 0, and

An =
2

l

∫ l

0

f(x) cos
(nπx

l

)
dx.

The reason why you would want to use one type of extension over
the other depends on the type of problem at hand. For Dirichlet con-
ditions on the half-interval we want the odd extension; for Neumann
conditions we want the even extension.

6.6. Coefficients and Their Decay

In this section we want to view f as being 2π-periodic and defined over
the whole line. Going back to the two examples we saw in Section 6.4,
when f(x) = x we saw that |Bn| decayed like C/n, for some constant
C (in fact, C = 2 for that example). Likewise, when f(x) = x2, we
had |An| decaying like C/n2. The speed with which coefficients decay
is rather important if we are interested in the convergence of the series,
and the following theorem is very useful.

Theorem 6.4. Let f be a 2π-periodic function with k − 1 continuous
derivatives, and whose k-th derivative is piecewise continuous. Then
the Fourier coefficients of f decay like C/nk, where the constant C
depends only on f .
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Proof. By induction on k. Let’s compute An, n ≥ 1.

An =
1

π

∫ π

−π
f(x) cos(nx) dx

=
1

nπ

{
f(x) sin(nx)|π−π −

∫ π

−π
f ′(x) sinnx dx

}
= − 1

nπ

∫ π

−π
f ′(x) sinnx dx.

By induction this last integral is bounded by some constant over nk−1,
so that |An| ≤ C/nk. Likewise for Bn, n ≥ 1 we have

Bn =
1

π

∫ π

−π
f(x) sin(nx) dx

=
1

nπ

{
−f(x) cos(nx)|π−π +

∫ π

−π
f ′(x) cosnx dx

}
=

1

nπ

∫ π

−π
f ′(x) cosnx dx,

where the last equality is true due to the periodicity of f . (Periodicity
is important here. Not only is f(−π) = f(π), but that is also true for
all of f ’s derivatives.) Again, induction gives us |Bn| ≤ C/nk. We are
left to do the basis of induction, k = 1. That means that f ′ is piecewise
continuous. The same formulas we have above for An and Bn are valid,
and the easy estimate∣∣∣∣∫ π

−π
f ′(x) sin(nx) dx

∣∣∣∣ ≤ ∫ π

−π
|f ′(x)| dx = C

shows that |An| decays like C/n. A similar estimate holds for Bn. �

This theorem says that the more derivatives you have in hand, the
better the Fourier series will converge. Also true is a converse of this
theorem: The faster the coefficients decay, the more derivatives you
have for f . We will not prove this fact.

NB: The above theorem is not optimal, as shown by the examples
we computed. The reader is invited to sharpen the hypotheses of this
theorem.

6.7. Linear Algebra to the Rescue: L2

We now ask ourselves the important question: Why, and how, would
(6.1) be true? If we look at our problem from the point of view of
Linear Algebra, we are claiming that the function f is in the linear



LECTURE 6. THE CONVERGENCE OF FOURIER SERIES 7

span of the functions 1, cos(x), cos(2x), . . . , sin(x), sin(2x), etc. So
what we have here is a vector space problem – but which vector space?

Definition 6.5. The space L2 = L2([−π, π]) is formed by those func-
tions f for which ∫ π

−π
|f(x)|2 dx

is finite.

Technically the integral in the above definition should be the Lebesgue
integral – but we will gloss over this point and work with the Riemann
integral here.

Definition 6.6. The L2 norm of a function f is given (and denoted)
by

‖f‖ =

√∫ π

−π
|f(x)|2 dx.

The inner product of two functions f and g in L2 is given by

(f, g) =

∫ π

−π
f(x)g(x) dx.

The inner product on L2 plays the role of the dot product on Rn.
In fact, if you think of the dot product of two vectors as adding the
products of the coordinates, you will see that the inner product does the
‘same’ for functions (where here x plays the role of vector coordinate).

With this notion of inner product, we see that the orthogonality
relations are simply stating that the functions 1, cos(x), cos(2x), . . . ,
sin(x), sin(2x), etc, are mutually perpendicular. This is great, since
orthogonality implies independence. Since we do have independence,
to prove that the trigonometric functions for a basis for L2, all we
need to check is that those functions do span L2. The next definition
establishes our notion of convergence in this vector space.

Definition 6.7. Given f ∈ L2, denote by S(f,N) the N -th partial
sum of the Fourier series of f , namely

S(f,N)(x) =
A0

2
+

N∑
n=1

An cos(nx) +Bn sin(nx).

We say that S(f,N) converges to f in L2 if and only if

lim
N→∞

‖f − S(f,N)‖ = 0.

Convergence in L2 can be very strange.
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Exercise 8. Find a sequence of functions gn ∈ L2 such that ‖gn‖ → 0,
but gn(x) does not converge to zero for any value of x.

Our next result shows that S(f,N) is, in some sense, the best ap-
proximation for f . To state the result, let

g(x) =
a0

2
+

N∑
n=1

an cos(nx) + bn sin(nx),

where the an and bn are any coefficients.

Theorem 6.8. With g defined as above, we have

‖f − S(f,N)‖ ≤ ‖f − g‖.

In other words, of all finite trigonometric sums of order at most N ,
the one with exactly the Fourier coefficients of f is the one that best
approximates f in L2.

Proof. We will show the following equality:

(6.9) ‖f − g‖2 = ‖f − S(f,N)‖2 + ‖g − S(f,N)‖2.

As a consequence

‖f − g‖ ≥ ‖f − S(f,N)‖,
with equality holding if and only if g = S(f,N). In what follows, we
will write S = S(f,N). To see that (6.9) is true, we start by expanding
the left hand side:

‖f−g‖2 = (f−g, f−g) = (f, f)−2(f, g)+(g, g) = ‖f‖2−2(f, g)+‖g‖2.

Now, add and subtract the quantities ‖S‖2 and 2(f, S):

‖f − g‖2 = ‖f‖2 − 2(f, S) + ‖S‖2 − ‖S‖2 − 2(f, g) + 2(f, S) + ‖g‖2.

Notice that ‖f‖2 − 2(f, S) + ‖S‖2 = ‖f − S‖2. The above expression
becomes

‖f − g‖2 = ‖f − S‖2 − ‖S‖2 − 2(f, g) + 2(f, S) + ‖g‖2.

All that is left to do is see that ‖g−S‖2 = −‖S‖2− 2(f, g) + 2(f, S) +
‖g‖2. We compute:

(f, S) =
A0

2
(f, 1) +

N∑
n=1

An(f, cos(nx)) +Bn(f, sin(nx))

= π
A2

0

2
+

N∑
n=1

π(A2
n +B2

n) = (S, S) = ‖S‖2.
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Likewise we find

(f, g) = π
a0A0

2
+

N∑
n=1

π(a0A0 + b0B0) = (S, g).

The reader is now invited to finish the proof. �

Now take g = 0 in (6.9). We get ‖f‖2 = ‖f − S‖2 + ‖S‖2, and so
‖f‖2 ≥ ‖S‖2. Explicitly this reads

A2
0

2
+

N∑
n=1

(A2
n +B2

n) ≤ 1

π
‖f‖2.

Since N is arbitrary, we obtain Bessel’s inequality :

(6.10)
A2

0

2
+
∞∑
n=1

(A2
n +B2

n) ≤ 1

π
‖f‖2.

Bessel’s inequality is related to Pythagoras’ Theorem in Rn. What
that theorem says is that the square of the norm of a vector is the sum
of the squares of the sizes of each of that vector’s components, when
projected in orthogonal directions. The reason why we did not get
equality in Bessel’s inequality is simply because we don’t know yet if
the orthogonal directions given by the trigonometric functions span the
whole of L2. If we knew that, then Bessel’s inequality would become
an equality, and vice versa: if we could prove that we have equality in
(6.10), then we would know that the trigonometric functions span L2.
We will assume that we have proved that the trigonometric functions
span L2. Then we have:

Theorem 6.11. (Parseval’s identity.) If f ∈ L2, then

A2
0

2
+
∞∑
n=1

(A2
n +B2

n) =
1

π
‖f‖2.

Exercise 9. Apply Parseval’s identity to the function f(x) = x and
conclude that

∞∑
n=1

1

n2
=
π2

6
.

Exercise 10. Apply Parseval’s identity to the function f(x) = x2.
What can you conclude?
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6.8. The Many Faces of Convergence

As we pointed out before, convergence in the space L2 does not imply
convergence for particular values of x.

Definition 6.12. We say that fn converges pointwise to f if and only
if for each x ∈ [−π, π] we have fn(x)→ f(x), as n goes to infinity.

Definition 6.13. We say that fn converges uniformly to f if and only
if for each ε > 0 there is some n0 depending only on ε (and not on x)
such that if n ≥ n0, then |fn(x)− f(x)| < ε.

Roughly speaking, uniform convergence implies not only that for
each x we have fn(x)→ f(x), but that fn(x) and fn(y) converge at the
same rate to f(x) and f(y).

Exercise 11. Show that pointwise convergence implies neither uni-
form nor L2 convergence. Show that L2 convergence implies neither
pointwise nor uniform convergence. Show that uniform convergence
implies both pointwise and L2 convergence.

A Fourier series may not converge pointwise: Take f(x) = x and
check that S(f,N)(π) = 0 for all N . We can fix that problem if we
redefine f at −π and π to be equal to zero, but it seems silly to redefine
f so that we can obtain pointwise convergence.

More dramatically, if f is not continuous, then S(f,N) can never
converge uniformly to f . That is because of a theorem from Analysis
that guarantees that the uniform limit of continuous functions must be
continuous. Since the S(f,N) are continuous, we can’t have uniform
convergence to f when f itself is discontinuous.

6.9. The Way Things Are

In this section we give a survey of convergence results for Fourier series.
We won’t prove any of these results. We assume throughout that f ∈
L2.

Theorem 6.14. If f is piecewise differentiable, then S(f,N)(x) con-
verges to f(x) for all values of x for which f is continuous. If x is a
point of discontinuity of f , then S(f,N)(x) converges to the average of
the lateral limits of f at x.

Theorem 6.15. If f is piecewise differentiable and continuous, then
S(f,N) converges uniformly to f . The rate of convergence depends on
the degree of differentiability of f .
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Theorem 6.16. (Carleson) If f ∈ L2 (without smoothness assump-
tions), then for almost every x we have that S(f,N)(x) converges to
f(x).

(The notion of ‘almost every x’ has a precise, technical meaning in
Analysis. It is fair to say that this theorem is one of the hardest in all
of Mathematics.)

Theorem 6.17. (Gibbs’ phenomenon) If f has a discontinuity at x,
then S(f,N) has a little bump near x. The height of that bump tends
to a constant as N increases, and the bump is always present.

Of the theorems above the most useful for us are the first two.
They were both proved by Dirichlet – indeed, he was the first to show
any type of convergence results for Fourier series. (Cauchy tried, but
failed.) Here was Dirichlet’s approach: If you insert the formula for the
An and Bn into S(f,N), and exchange the finite sum with the integral,
you get

S(f,N)(x) =

1

π

∫ π

−π
f(y)

(
1

2
+

N∑
n=1

(cos(ny) cos(nx) + sin(ny) sin(nx))

)
dy

=
1

2π

∫ π

−π
f(y)

(
1 +

N∑
n=1

2 cos(n(x− y))

)
dy.

We set

DN(z) = 1 +
N∑
n=1

2 cos(nz).

This is the so-called Dirichlet kernel, and it can be shown to equal

(6.18) DN(z) =
sin(N + 1

2
)z

sin 1
2
z

.

The function DN has useful properties that Dirichlet explored to obtain
his convergence results.

Exercise 12. Prove formula (6.18). (This could be very hard.)

Exercise 13. What is
∫ π
−πDN(x) dx? (This is very easy!)

Exercise 14. Use Maple to infer a relationship between the height
of the bump in Gibbs’ phenomenon, and the size of the jump at the
discontinuity.


