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LECTURE 7
The Wave Equation

7.1. Outline of Lecture

• Examples of Wave Equations in Various Settings
• Dirichlet Problem and Separation of variables revisited
• Galerkin Method
• The plucked string as an example of SOV
• Uniqueness of the solution of the well posed problem
• Cauchy Problem for the infinite string

Figure 7.1: The Vibrating Membrane
(draw your own figure).
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7.2. Examples of Wave Equations in Various Set-
tings

As we have seen before the ”classical” one-dimensional wave equation
has the form:

(7.1) utt = c2uxx,

where u = u(x, t) can be thought of as the vertical displacement of
the vibration of a string.

The string can be fixed at both ends, or just at one end, or we can
think of an ”infinite” string, that is not bound at any end. Each will
yield different boundary conditions for the well-posed wave equation.
We can also consider the case where the string is ”pushed” with an
external force h(x, t), or where we take under consideration the friction
coefficient from the air that the string displaces. These two equations
will be called ”forced” and ”damped” respectively. In the ”forced”
case, the wave equation is:

utt = c2uxx + h(x, t),

where an example of the acting force is the gravitational force. In the
”damped” case the equation will look like:

utt + kut = c2uxx,

where k can be the friction coefficient.
If we have more than one spatial dimension (a membrane for ex-

ample), the wave equation will look a bit different. In the case of
the vibrating membrane we have two spatial variables and the wave
equation will look like:

utt = c2(uxx + uyy).

For n−dimensions (whatever THAT means...) the n-wave equation will
be:

utt = c2(ux1x1 + ux2x2 + · · ·+ uxnxn).

The initial conditions for the one-dimensional wave equation will be:

u(x, 0) = f(x), ut(x, 0) = g(x).

For the finite string the boundary conditions will be:

u(0, t) = A(t), u(L, t) = B(t).
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7.3. Dirichlet Problem and Separation of Variables

If we tie the string at both ends we can have the following boundary
conditions:

u(0, t) = A(t), u(L, t) = B(t),

where A, B are C1 piecewise functions. For example, we can have a
sinusoidal function at one end and a Heaviside function at the other.

When the boundary values A and B are 0 we obtain the Dirichlet
Problem for the wave equation:

utt = c2uxx, 0 < x < L, t > 0 DE

u(0, t) = 0, u(L, t) = 0, t > 0 BC

u(x, 0) = f(x), ut(x, 0) = g(x) 0 < x < L IC.

As you have seen in Lecture 5 for the diffusion equation, the method
of separating the variables is a very convenient way to obtain solutions
for PDEs. In the case of the Dirichlet Problem we will quickly review
the method.

Theorem 7.2. A solution of the problem:

utt = c2uxx, 0 < x < L, t > 0 DE

u(0, t) = 0, u(L, t) = 0, t > 0 BC

u(x, 0) = f(x), ut(x, 0) = g(x) 0 < x < L IC.

is given by:

u(x, t) =
N∑

n=1

[
L

nπc
Ān sin(

nπct

L
) + Bn cos(

nπct

L
)

]
sin(

nπx

L
),

where: f(x) =
∑N

n=1 Bn sin(nπx
L

), and g(x) =
∑N

n=1 Ān sin(nπx
L

). The

coefficients Ān and Bn are given by: Bn = 2
L

∫ L

0
f(x) sin(nπx

L
), Ān =

2
L

∫ L

0
g(x) sin(nπx

L
).

Proof. We will use the method of separation of variables, namely think
of the solution u(x, t) as a product of a function that depends only on
the variable t and of a function that depends only on the variable x.

Let u(x, t) = X(x)T (t) and substitute in the equation utt = c2uxx,
to obtain:

X(x)T̈ (t) = c2Ẍ(x)T (t),

or T̈ (t)
c2T (t)

= Ẍ(x)
X(x)

, thus the equality is one of functions of different vari-

ables, so both quotients have to be constant.



4 M. VAJIAC & J. TOLOSA, AN INTRODUCTION TO PDE’S

Say T̈ (t)
c2T (t)

= Ẍ(x)
X(x)

= ±λ2, then we can solve each ordinary differential

equation separately. We have the following three cases: −λ2, λ2, and
λ = 0.

Case 1 When the constant is −λ2, then the solutions for Ẍ(x)
X(x)

=

−λ2, are: X(x) = c1 sin(λx)+ c2 cos(λx), and the solutions for T̈ (t)
c2T (t)

=

−λ2, are: T (t) = d1 sin(λct)+d2 cos(λct). Then u(x, t) = (d1 sin(λct)+
d2 cos(λct))(c1 sin(λx) + c2 cos(λx)).

Case 2 When the constant is λ2, then the solutions for Ẍ(x)
X(x)

= λ2,

are: X(x) = c1e
λx + c2e

−λx, and the solutions for T̈ (t)
c2T (t)

= λ2, are ±cλ,

are T (t) = d1e
λct + d2e

−λct. Then u(x, t) = (d1e
λct + d2e

−λct)(c1e
λx +

c2e
−λx).
Case 3 When the constant is 0, then the equations become Ẍ(x) =

T̈ (t) = 0, and X(x) = c1x + c2, and T (t) = d1t + d2. Then u(x, t) =
(d1t + d2)(c1x + c2).

Let’s take a look at the boundary conditions: u(0, t) = 0, u(L, t) =
0. The only solution for u(x, t) that can satisfy them is u(x, t) =
(d1 sin(λct) + d2 cos(λct))(c1 sin(λx) + c2 cos(λx)), and the boundary
conditions translate into:

(d1 sin(λct) + d2 cos(λct))(c1 sin(0) + c2 cos(0)) = 0

(d1 sin(λct) + d2 cos(λct))(c1 sin(λL) + c2 cos(λL)) = 0, ∀t > 0,

namely:

c2 = 0

c1 sin(λL) = 0.

From the last condition we obtain λ = πn
L

, and

u(x, t) =
∞∑

n=1

[
d1n sin(

πn

L
ct) + d2n cos(

πn

L
ct)

]
cn sin(

πn

L
x).

The only conditions left to check are the initial conditions:

u(x, 0) = f(x) =
N∑

n=1

Bn sin(
nπx

L
),

ut(x, 0) = g(x) =
N∑

n=1

Ān sin(
nπx

L
).

Then u(x, t) =
∑N

n=1

[
L

nπc
Ān sin(nπct

L
) + Bn cos(nπct

L
)
]
sin(nπx

L
),

�
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Remark. In the more general case for the Dirichlet Problem, when
initial conditions (IC) change to more general homogeneous conditions:
k1u(x, 0)+k2ux(x, 0) = 0, we can solve the problem in the same manner,
using separation of variables.

Exercise 1. Check that Case 1 is the only one that verifies the bound-
ary conditions in the proof above.

Exercise 2. Check that the solution found above verifies the initial
conditions.

Exercise 3. A string of length π is held fixed at both endpoints. Its
initial position is f(x) = sin(x) and its initial velocity is g(x) = cos x.
Assuming that c = 1, find the position of the string u(x, t) for every
x ∈ [0, π] and for every t > 0. Find an approximate value for u(x, t)
by adding several terms of the series. Animate the approximation and
draw a 3D plot.

Note. Use Maple carefully, there might be some tricky answers.
Finally, use Maple to check that your (approximate) solution satisfies
the PDE, the boundary conditions, and the initial conditions (at least
approximately).

Exercise 4. Solve the following problem for the string equation:

PDE utt = uxx,

BC u(0, t) = 0, ux(π, t) = 0 for every t > 0;

IC u(x, 0) = sin(x), ut(x, 0) = 0, for every x ∈ [0, π] .

Notice the change in the boundary conditions. This will lead to
different eigenvalues and eigenfunctions.

Use Maple to animate the solution you found, to draw a 3D plot,
and to check that the solution satisfies the conditions of the problem.
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7.4. Galerkin Method for the ”Damped” Wave Equa-
tion

The ”damped” wave equation looks like:

utt + νut = c2uxx, 0 < x < L, t > 0 DE

u(0, t) = 0, u(L, t) = 0, t > 0 BC

u(x, 0) = f(x), ut(x, 0) = g(x) 0 < x < L. IC.

From our previous discussion, we know that the solution will have
the form:

u(x, t) =
N∑

n=1

fn(t) sin(
nπx

L
).

Plugging into the equation, we obtain the following equations for fn :

f̈n + νḟn + (αn)2fn = 0,

where αn = cnπ
L

with eigenvalues:

λn12 =
ν

2
±

√
(
ν

2
)2 − (αn)2,

i.e.λn12 =
ν

2
± iωn, where: ωn =

√
((αn)2 − ν

2
)2.

So, if the friction coefficient ν is small enough, then we will have:

fn(t) = e−
ν
2
t(cn cos(ωnt) + dn sin(ωnt)),

and

u(x, t) =
∞∑

n=1

e−
ν
2
t(cn cos(ωnt) + dn sin(ωnt)) sin(

nπx

L
),

We input the initial conditions:

u(x, 0) = f(x) =
∞∑

n=1

cn sin(
nπx

L
), ut(x, 0) = g(x) =

∞∑
n=1

(ωndn −
ν

2
cn) sin(

nπx

L
)

Then cn is the n−th Fourier coefficient for f, and ωndn − ν
2
cn is the

n−th Fourier coefficient for g, so EUREKA! The problem has been
SOLVED:

cn =
2

l

∫ L

0

f(x) sin(
nπx

L
)dx

ωndn −
ν

2
cn =

2

l

∫ L

0

g(x) sin(
nπx

L
)dx

dn =
2

ωl

∫ L

0

[ν

2
f(x) + g(x)

]
sin(

nπx

L
)dx.
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7.5. The Example of the Plucked String

The plucked string refers to the initial condition for the Dirichlet
problem , where f(x) looks like a ”plucked string”, namely:

utt = c2uxx, 0 < x < L, t > 0 DE

u(0, t) = 0, u(L, t) = 0, t > 0 BC

u(x, 0) = f(x), ut(x, 0) = 0 0 < x < L IC,

where

f(x) =


u0

x0

x, 0 ≤ x ≤ x0

u0
x−L
x0−L

, x0 ≤ x ≤ L

Figure 7.: The initial condition for the ”Plucked string” wave.
(draw your own figure).

The behaviour of the solutions is exemplified in the Maple animations.
Let’s find a formal solution to the ”plucked string” equation. In

order to do this we need to find Bn, the Fourier sine coefficients of
f(x).

Bn =

∫ L

0

f(x)sin(
nπx

L
)dx

=
2

L
f(x)(

−L

nπ
) cos(

nπx

L
)|L0 +

2

L

L

nπ

∫ L

0

f ′(x) cos(
nπx

L
)dx.
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We have that:

ḟ(x) =


u0

x0

, 0 ≤ x ≤ x0

u0

x0−L
, x0 ≤ x ≤ L,

and f(0) = f(L) = 0, thus:

Bn =
2

L
(

L

nπ
)

∫ x0

0

u0

x0

cos(
nπx

L
)dx +

2

L
(

L

nπ
)

∫ L

x0

u0

x0 − L
cos(

nπx

L
)dx

=
2

L
(

L

nπ
)2(

u0

x0

sin(
nπx0

L
)− u0

x0 − L
sin(

nπx0

L
))

=
2L2u0

π2x0(L− x0)

1

n2
sin(

nπx0

L
).

Now we can write the formal solution to the plucked string equation:

u(x, t) =
2L2u0

π2x0(L− x0)

∞∑
n=1

1

n2
sin(

nπx0

L
) cos(

nπct

L
) sin(

nπx

L
).

7.5.1. Musical instruments

Many instruments produce sound by making strings vibrate; such are
the harp, the piano, the harpsichord, the guitar, the violin, and others.
Strings are kept fixed at the endpoints, but they way the instruments
are played create different initial conditions. In instruments like the
guitar, the string is plucked; this produces an initial perturbation with
no initial velocity. In the piano, on the other hand, the string is hit,
which creates an initial velocity but no initial perturbation from the
initial position.

The oscillations of the string are described by

u(x, t) =
∞∑

n=1

(An cos ωnt + Bn sin ωnt) sin λnt,

where
λn = n

π

L
and ωn = cλn = cn

π

L
.

The sound we hear is thus a combination of the main harmonic
sounds (eigenfunctions)

un(x, t) = (An cos ωnt + Bn sin ωnt) sin λnt.

The contribution of each particular harmonic is measured by its
energy, which turns out to be equal to:

En =
ω2

nM

4
(A2

n + B2
n),
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where M = DL is the total mass of the string (recall that D was the
density).

For the plucked string (Section 7.5), the energy is given by:

En =
Mu2

0L
2c2

n2π2x2
0(L− x0)2

sin2 πnx0

L
.

The energy decreases as n−2, so only the main tone u1 and a few
other harmonics are audible.

On the other hand, if we hit the string with a flat hammer of length
2δ with center at x0 and producing an initial velocity v0, the energy of
the nth harmonic is

En =
4MV 2

0

n2
π2 sin2 πnx0

L
sin2 πnδ

L
,

and the energy again decreases as n−2. However, if the hammer is
sufficiently narrow, letting δ tend to zero (the blade of a knife), we get
the model of a string getting an impulse concentrated at a point x0.
The corresponding energy is:

En =
v2

0

L
sin2 πnx0

L
.

Thus, for a very narrow hammer the energies of all harmonics are
of the same order and the generated sound will be saturated with har-
monics. This can be checked experimentally, by hitting a string with
the blade of a knife. The sound will have a metallic quality.

Not all harmonics are desirable. The first ones, u2 up to u6, sound
well together with the main harmonic u1. However, the 7th and the
first harmonics sounding together produce a sense of dissonance.

There are several ways to try to “kill” those harmonics by percus-
sion (as in the piano).

a). The position of the hammer. The presence of the factor

sin
πnx0

L
shows that by choosing the center x0 of the hammer at the

node of the undesired harmonic we may make it disappear (make the
corresponding An and Bn be equal to zero). In modern pianos the po-
sition of the hammer is chosen near the nodes of the 7th and the 8th
harmonics, to “kill” them.

b). The shape of the hammer. In modern pianos the hammers are
not flat, but rather round. One can model this situation by choosing
the initial velocity to be, say, a parabola on the interval [x0 − δ, x0 + δ],
instead of a horizontal line. Older pianos, which had flatter and nar-
rower hammers, produced a more piercing, shrilled sound.
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c). The rigidity of the hammer. If instead of being rigid the ham-
mer is softer. In this case the motion is not described by its initial
position and velocity, but rather by a short-time acting force, which
varies in time.

Exercise 5. Find the solution u(x, t) of the string equation if l = π,
c = 1, when both endpoints are fixed, the initial velocity is zero, and
u(x, t) is the following piecewise linear function:



LECTURE 7. THE WAVE EQUATION 11

7.6. Uniqueness of the solution to the wave equa-
tion

Theorem 7.3. Let u1(x, t) and u2(x, t) be two solutions of the problem:

utt = c2uxx, 0 < x < L, t > 0 DE

u(0, t) = A(t), u(L, t) = B(t), t > 0 BC

u(x, 0) = f(x), ut(x, 0) = g(x) 0 < x < L. IC,

where A, B, f, g are C1 piecewise continuous. Then u1(x, t) = u2(x, t)
for all points in the domain.

Proof. Let v(x, t) = u1(x, t)− u2(x, t), then v satisfies the wave equa-
tion with initial conditions: u(x, 0) = ut(x, 0) = 0, and boundary condi-
tions u(0, t) = u(L, t) = 0. Our goal is to prove that v(x, t) = 0 ∀x, t.

In order to accomplish this, define:

H(t) =

∫ L

0

[
c2vx(x, t)2 + vt(x, t)2

]
dx.

We will prove that H(t) = 0 first. Differentiating with respect to t we
obtain:

Ḣ(t) =

∫ L

0

[
c22vxvxt + 2vtvtt

]
dx

= 2c2

∫ L

0

[vxvxt + vtvxx] dx

= 2c2

∫ L

0

δ

δx
(vxvt)dx = 2c2 [vx(x, t)vt(x, t)]L0

= 2c2(vx(L, t)vt(L, t)− vx(0, t)vt(0, t)) = 0.

Since Ḣ(t) = 0, H(t) is constant, and as H(0) = 0, we conclude that
H(t) = 0.

Then vt(x, t) = 0, and v(x, t) = v(x, t) − v(x, 0) =
∫ L

0
vt(x, t)dt =

0. �

Remark. The energy integral of the string at time t is:

E(t) =

∫ L

0

[
T0ux(x, t)2 + Dut(x, t)2

]
dx,

where D is the mass per unit length and T0 is the constant tension
when the string is straight. We can see that the energy is proportional
to H if we construct H using u instead of v. So the uniqueness proof
comes from the conservation of energy for the unforced string.
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7.7. Cauchy Problem for the infinite string, D’Alembert’s
Solution

When we have an infinite string, with no boundary, then we have the
following Cauchy Problem:

utt = c2uxx, 0 < x < L, t > 0 DE

u(x, 0) = f(x), ut(x, 0) = g(x) 0 < x < L. IC

Theorem 7.4. The solution of the wave equation for the infinite string
is:

u(x, t) =
1

2
[f(x− ct) + f(x + ct)] +

1

2c

∫ x+ct

x−ct

g(s)ds,

when f is C2 and g is C1.

Proof. The wave equation can be written in the alternate form:

(
δ2

δt2
− c2 δ2

δx2
)u(x, t) = 0,

and we can factor the ”differential operator”

(
δ2

δt2
− c2 δ2

δx2
) = (

δ

δt
− c

δ

δx
)(

δ

δt
+ c

δ

δx
)

Now we will use this factorization to find the general solution to the
wave equation. Denote: v(x, t) = ( δ

δt
+ c δ

δx
)u(x, t), then the wave

equation becomes: ( δ
δt
−c δ

δx
)v(x, t) = 0. We know that the last equation

has solutions of the form: v(x, t) = F (x − ct), so the wave equation
becomes:

(
δ

δt
+ c

δ

δx
)u(x, t) = F (x− ct).

To solve it, we make the change of variable: w = x− ct, z = x+ ct,
and let U(w, z) = u(x, t), and we replace in the original equation to
get:

ut + cux = Uwwt + Uzzt + c(Uwwx + Uzzx)

= −cUw + cUz + cUw + cUz

= 2cUz = F (z).

Thus, U(w, z) =

∫
1

2c
F (z)dz + G(w) = H(z) + G(w), or:

u(x, t) = H(x + ct) + G(x− ct).
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We have obtain so far that the general solution is a superposition of
waves traveling in opposite direction with speed c. We will use now
the initial conditions:

f(x) = u(x, 0) = H(x) + G(x)

g(x) = ut(x, 0) = Ḣ(x)c− Ġ(x)c.

We obtain:

H(x) + G(x) = f(x)

H(x)−G(x) =
1

c

∫ x

0

g(s)ds + C,

and

H(x) =
1

2

[
f(x) +

1

c

∫ x

0

g(s)ds + C

]
G(x) =

1

2

[
f(x)− 1

c

∫ x

0

g(s)ds− C

]
=

1

2

[
f(x) +

1

c

∫ 0

x

g(s)ds− C

]
.

Then:

u(x, t) = H(x + ct) + G(x− ct)

=
1

2

[
f(x + ct) +

1

c

∫ x+ct

0

g(s)ds + C

]
+

1

2

[
f(x− ct) +

1

c

∫ 0

x−ct

g(s)ds− C

]
,

which completes the proof. �

Exercise 6. Show that odd/even initial conditions yield odd/even so-
lutions.
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Exercise 7. Show that periodic initial conditions yield periodic solu-
tions.

Exercise 8. Show that we can deduct the solution to the finite string
problem from the solution of the infinite string. You may need help on
this one!
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7.8. Challenge Problems for Lecture 7

Problem 1. A damped string of length 1 has equation

utt = c2uxx − γut,

where γ is a small damping coefficient. Find the solution u(x, t) as-
suming that both endpoints are fixed, the initial condition is x(1 − x)
and the initial velocity is zero.

Plot and animate the solution for the case when c =
1

4
and γ =

1

5
.

Problem 2. Find the solution u(x, y, t) of a square membrane with
side 1 fixed on the boundary, if the initial position is u(x, y, 0) = (x−
x2)(y − y2) and the initial velocity is zero.

Animate several eigenfunctions un,m(x, y, t), say, u1,1, u1,2, u3,5, as-
suming that c = 1.

Problem 3. Solve the string equation utt = c2uxx for L = 1, with
the boundary conditions u(0, t) = 0 and u(1, t) = 1, with zero initial
velocity, assuming that the initial position is

(a) u(x, 0) = sin x (easier),
(b) u(x, 0) = x2 (harder).

Hint: You cannot use the superposition principle, since the bound-
ary condition at x = 1 is not homogeneous. Try a change of coordinates
first, v(x, t) = u(x, t) + h(x), where h(x) is a suitable (easy) function
that would guarantee that v also satisfies the string equation, now with
homogeneous boundary conditions.

Problem 4. Solve the equation utt = c2uxx + sin x For 0 ≤ x ≤ π and
t > 0, with the boundary conditions u(0, t) = 1, ut(π, t) = 2, and the
initial conditions u(x, 0) = f(x), ut(x, 0) = g(x).

Hint: Make the change of coordinates u(x, t) = y(x)+v(x, t), where
y(x) satisfies

c2y′′ + sin x = 0

, y(0) = 1, and y(π) = 2. Find y.
What will be the PDE for v?
What are the (boundary and initial) conditions for v?

Problem 5. Solve the string equation utt = c2uxx for L = 1, with
the boundary conditions u(0, t) = 0 and ux(1, t) + u(1, t) = 0. This
corresponds to the case when the left end is fixed and the right end is

attached to an elastic hinge. The initial conditions are u(x, 0) = x−2

3
x2

and ut(x, 0) = x.
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Note. This exercise is hard! The eigenvalues λn will be solutions
of a transcendental equation.

Problem 6. In the ”damped” case, what happens if the friction co-
efficient is large, say that you immerse your string in a high viscosity
liquid?


