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LECTURE 8
Sturm-Liouville Theory—Part I

1.1. Outline of Lecture

• Example of a non-homogeneous boundary value problem
• The Ten-Step Program

1.2. The heat equation with a radiation boundary
condition

In this lecture, we consider the initial boundary value problem (IBVP)
with nonhomogeneous boundary data,

ut = Kuxx : 0 < x < L, t > 0

u(0, t) = T1

ux(L, t) = −h
[
u(L, t)− T2

] }
: t > 0,

u(x, 0) = T3 : 0 < x < L,

where h, T1, T2, T3, and K are (strictly) positive constants. We have
seen all of these expressions except for the boundary condition at x =
L: this is called a radiation or Robin condition. It describes how
heat radiates radiates from the end into the surrounding medium. The
general form of a homogeneous Robin condition at x = a is

−kux(a, t) + βu(a, t) = 0 t > 0

where k is the thermal conductivity of the bar (introduced in Lecture
2 (Bernoff)), a positive constant. If β < 0 (and, of course, u(a, t) > 0),
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2 SOCHA & ARNOLD, AN INTRODUCTION TO PDE’S

then heat flows into the bar, an absorption condition. If, as in our
IBVP, β > 0, then heat flows out of the bar, a radiation condition.
Rewriting our IBVP so that the radiation condition is more readable,
we see

ut = Kuxx : 0 < x < L, t > 0,(1.1)

u(0, t) = T1

ux(L, t) + hu(L, t) = hT2

}
: t > 0,

u(x, 0) = T3 : 0 < x < L.

A straightforward application of the separation of variables tech-
nique that worked so well for the heat equation with homogeneous
Dirichlet or Neumann boundary data leads to a hard problem (see
Problem 1), so we will try to transform the problem into one we ac-
tually can handle. Motivated by the examples shown in Lectures 2,
5 (Wittwer), and 8 (Vajiac) we will begin by seeking a steady-state
solution.

1.2.1. The steady state solution

Finding a steady state solution means that we seek a solution that
is independent of time. That is, find a function us(x) that satisfies
ut = Kuxx on 0 < x < L, together with the boundary data us(0) = T1

and u′s(L) + hus(L) = hT2. Because {d/dt}(us(x)) = 0, we have

u′′s(x) = 0.

Integrate twice to find us(x) = ax+ b. Requiring that this line satisfies
the boundary data allows us to compute the integration constants a
and b. After this work, we find the steady-state solution:

(1.2) us(x) =
h(T2 − T1)

1 + hL
x + T1.

Exercise 1. Do the algebra to prove that this is the correct form of
the steady solution.

1.2.2. Homogeneous boundary conditions

Now we transform our problem by setting v(x, t) = u(x, t) − us(x).
A straightforward calculation (Problem 2) demonstrates that v must
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satisfy the new IBVP

vt = Kvxx : 0 < x < L, t > 0

v(0, t) = 0
vx(L, t) + hv(L, t) = 0

}
: t > 0,

v(x, 0) = T3 − us(x) : 0 < x < L.

How is this an improvement? Notice that both boundary conditions
are now homogeneous and it is only the initial condition that varies in
x. Guided by the previous lectures, we expect that this non-constant
v(x, 0) will not pose any difficulties.

The goal now is to find a solution v by separation of variables, and
then to find a solution u(x, t) = v(x, t) + us(x) of (1.1).

1.2.3. Separation of variables

Applying the standard separation of variables argument leads us to two
ordinary differential equations. For v(x, t) = X(x)T (t), we find, as in
Lecture 5,

(1.3)
T ′(t)

KT (t)
=

X ′′(x)

X(x)

which we set equal to −λ to find

T ′(t) = −λKT (t)

X ′′(x) = −λX(x).

Again, the general solution for the time dependence has the form

T (t) = Ce−λKt.

1.2.4. A Sturm-Liouville Equation

From this point forth, we seek only nontrivial (nonzero) solutions v(x, t).
From the separation of variables argument T (t) = Ce−λKt. Note

that T is nonzero for all t. We now must find nontrivial solutions of
the equation

(1.4) −X ′′ = λX.

Recall the boundary conditions, for all t > 0

v(0, t) = 0 and vx(L, t) + hv(L, t) = 0.

Substituting v(x, t) = X(x)T (t) in each of these conditions provides

X(0)T (t) = 0 and X ′(L)T (t) + hX(L)T (t) = 0
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for all t > 0. Since T (t) is nonzero, divide these equations by T (t) to
capture

X(0) = 0 and X ′(L) + hX(L) = 0.

Putting all of this together leads to a Sturm-Liouville problem,

(1.5) −X ′′ = λX, X(0) = 0, X ′(L) + hX(L) = 0.

If a nontrivial solution of equation (1.5) exists, then the constant λ
is called an eigenvalue and the solution X is called its associated
eigenfunction.

Postponing until Lecture 9 a discussion of the possibility of complex
eigenvalues, we consider three distinct cases:

i. λ < 0,
ii. λ = 0, or
iii. λ > 0.

Let’s first consider the possibility that λ is negative.

1.2.4.1. Case i: λ < 0. A purely analytical approach is described in
Appendix 1.5, but here we introduce a useful and more general ap-
proach called an energy argument. First, multiply both sides of
−X ′′ = λX by X and integrate both sides with respect to x on the
interval [0, L]:

−
∫ L

0

X(x)X ′′(x) dx = λ

∫ L

0

X2(x) dx.

Then integrate by parts to change the form of the left-hand side of this
equation:

(1.6) −X(x)X ′(x)

∣∣∣∣L
0

+

∫ L

0

[
X ′(x)

]2

dx = λ

∫ L

0

[
X(x)

]2

dx.

However,

−X(x)X ′(x)

∣∣∣∣L
0

= −X(L)X ′(L) + X(0)X ′(0).

The boundary conditions require X(0) = 0 and X ′(L) = −hX(L).
Thus,

−X(x)X ′(x)

∣∣∣∣L
0

= −X(L)
[
− hX(L)

]
+ 0 ·X ′(0) = hX(L)2 ≥ 0.

Now equation (1.6) becomes

(1.7)
hX2(L) +

∫ L

0
(X ′(x))2 dx∫ L

0
X2(x)dx

= λ
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from which it follows that λ ≥ 0.

1.2.4.2. Case ii: λ = 0. If λ = 0, then −X ′′ = λX becomes X ′′ = 0,
which has general solution

X(x) = A + Bx.

The boundary condition X(0) = 0 implies that A = 0, so the solution
is now X(x) = Bx, with derivative X ′(x) = B. The second boundary
condition provides

0 = X ′(L) + hX(L) = B + h(BL) = B(1 + hL).

Because both h > 0 and L > 0, it follows that B = 0. Hence, X(x) = 0
for all x. Since λ = 0 has only the trivial solution, we conclude that
λ = 0 is not an eigenvalue.

1.2.4.3. Case iii: λ > 0. Since λ > 0, we now know

X(x) = A cos
(
x
√

λ
)

+ B sin
(
x
√

λ
)
.

Applying the first boundary condition gives

0 = X(0) = A cos 0 + B sin 0 = A.

Thus, X(x) = B sin
(
x
√

λ
)
. Notice that we must have B 6= 0 to obtain

a nontrivial solution. The second boundary condition requires that

0 = X ′(L) + hX(L) = B
√

λ cos
(
L
√

λ
)

+ hB sin
(
L
√

λ
)
.

Dividing through by B cos
(
L
√

λ
)

shows

0 =
√

λ + h tan
(
L
√

λ
)
.

To obtain nontrivial solutions X(x), we must hope that this trigono-
metric equation has at least one solution for λ. This is a perfect oppor-
tunity to use a computer application such as Maple. In fact, we will
see that there are infinitely many solutions! Write these eigenvalues of
the BVP as λj such that

(1.8) − tan
(
L

√
λj

)
=

√
λj

h
,

with corresponding eigenfunctions

Xj(x) = sin
(
x
√

λj

)
.
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1.2.5. Orthogonality

The eigenvalues of the Sturm-Liouville problem (1.5) are the positive
solutions of

(1.9) − tan
(
L
√

λ
)

=

√
λ

h

and have associated eigenfunctions

(1.10) Xj(x) = sin
(
x
√

λj

)
.

In the Fourier theory developed in Lecture 6, the eigenfunctions had
the remarkable property of orthogonality. Because we can find only
approximate (numerical) solutions of (1.9), it will be difficult to show
that (for j 6= k) ∫ L

0

sin
(
x
√

λj

)
sin

(
x
√

λk

)
dx = 0,

for our eigenfunctions (1.10) . Returning to the differential equation
itself may provide more insight into the nature of these eigenfunctions.

Suppose that λ1 6= λ2 are two distinct eigenvalues with associated
eigenfunctions X1 and X2 that both satisfy the Sturm-Liouville prob-
lem

−X ′′ = λX, X(0) = 0, X ′(L) + hX(L) = 0.

Thus,

−X ′′
1 = λ1X1

−X ′′
2 = λ2X2.

Multiply the first equation by X2 and the second by X1 and subtract:

−X2X
′′
1 + X1X

′′
2 = (λ1 − λ2)X1X2.

Integrate this expression with respect to x on the interval [0, L] to find∫ L

0

(
−X2X

′′
1 + X1X

′′
2 ) dx = (λ1 − λ2)

∫ L

0

X1X2 dx.

Note that the integrand on the left is exact, so∫ L

0

d

dx

[
X1X

′
2 −X2X

′
1

]
dx = (λ1 − λ2)

∫ L

0

X1X2 dx.

Thus,

(1.11) X1X
′
2 −X2X

′
1

∣∣∣∣L
0

= (λ1 − λ2)

∫ L

0

X1X2 dx.
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Because X1(0) = 0 and X2(0) = 0,

(1.12) X1X
′
2 −X2X

′
1

∣∣∣∣L
0

= X1(L)X ′
2(L)−X2(L)X ′

1(L).

The next step is to argue that the right-hand side of equation (1.12)
also equals zero.

Both X1 and X2 must satisfy the second boundary condition of the
Sturm-Liouville equation. Thus,

X ′
1(L) + hX1(L) = 0

X ′
2(L) + hX2(L) = 0.

This system can be written in matrix form:[
X ′

1(L) X1(L)
X ′

2(L) X2(L)

] [
1
h

]
=

[
0
0

]
.

The fact that this matrix equation has a nontrivial solution demands
that the determinant of the coefficient matrix equal zero. Thus,

0 =

∣∣∣∣X ′
1(L) X1(L)

X ′
2(L) X2(L)

∣∣∣∣ = X ′
1(L)X2(L)−X ′

2(L)X1(L).

This last result, along with equations (1.11) and (1.12), provide

0 = (λ1 − λ2)

∫ L

0

X1X2 dx.

Finally, because λ1 and λ2 are distinct eigenvalues,

0 =

∫ L

0

X1X2 dx,

and X1 and X2 are orthogonal.

1.2.6. A formal solution and orthogonality

We may construct a formal solution for v by superposition:

(1.13) v(x, t) =
∞∑

j=1

Cje
−λjKt sin

(
x
√

λj

)
We want this formal solution to satisfy the initial condition. This
requires that

(1.14) T3 − us(x) = v(x, 0) =
∞∑

j=1

Cj sin(x
√

λj).

How do we know that such Cj exist?
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We have shown that the eigenfunctions

(1.15)
{

sin
(
x
√

λj

) }∞
j=1

are pairwise orthogonal. (Refer to Problem 3 in which you will demon-
strate via Maple that these functions are orthogonal.) Further, this set
forms a basis for L2 in which we may write our linear function v(x, 0) as
a linear combination of elements of (1.15). (This idea will be explored
further in Lecture 9.)

We may obtain the “Fourier” coefficients Cj just as the Fourier
coefficients were constructed in Lecture 6 (Aarao). Multiply both sides
of (1.14) by sin(x

√
λk) and integrate over the interval [0, L]. This gives∫ L

0

[T3 − us(x)] sin
(
x
√

λk

)
dx =

∫ L

0

∞∑
j=1

Cj sin
(
x
√

λk

)
sin

(
x
√

λj

)
dx.

Assuming uniform convergence, we may interchange the order of in-
tegration and summation. By orthogonality, the right-hand side is
non-zero only when j = k. Hence,

(1.16)

∫ L

0

[T3 − us(x)] sin
(
x
√

λk

)
dx =

∫ L

0

Ck sin2
(
x
√

λk

)
dx.

We may now write

(1.17) Ck =

∫ L

0
[T3 − us(x)] sin

(
x
√

λk

)
dx∫ L

0
sin2

(
x
√

λk

)
dx

for integers k ≥ 1. 1

Now we have completely determined the series solution for v, and
hence for u(x, t) = v(x, t) + us(x):

(1.18) u(x, t) =
∞∑

j=1

Cje
−λjKt sin

(
x
√

λj

)
+

h(T2 − T1)

1 + hL
x + T1

with (λj, Cj) solutions of equations (1.8) and (1.17), respectively.

1Using the neat inner product and norm notations introduced in Lecture 6, we may
write equation (1.17) above as

Ck =

(
v(x, 0), sin

(
x
√

λk

))
‖ sin

(
x
√

λk

)
‖2

.
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1.2.7. Convergence

How do we know that the formal series solution (1.18) converges uni-
formly on [0, L]? Further, the series formulations of ut, ux, uxx obtained
through term-by-term differentiation also ought to converge uniformly.
After all, in order to claim that a certain function u satisfies the IBVP,
it had better be true that u is actually a function, differentiable once
in t and twice in x!

Lemma 1.19. For all j ≥ 1, the coefficients Cj given by (1.17) satisfy
|Cj| ≤ M for some constant M .

Exercise 2. Prove the lemma.

This claim allows us to prove that all of the series formulations for
u, ut, ux, and uxx are uniformly convergent on [0, L].

1.2.8. Long-term behavior (Asymptotics)

Finally, what happens to the series solution for u(x, t) as t →∞? Since
λjK > 0 we can use the Lemma to show that

(1.20)

∣∣∣∣∣Cje
−λjKt sin

(
x
√

λj

)∣∣∣∣∣ ≤ |Cj|e−λjKt ≤ Me−λjKt → 0

as t →∞. By uniform convergence, then,

(1.21)
∞∑

j=1

Cje
−λjKt sin

(
x
√

λj

)
−→ 0 as t →∞.

Thus, u(x, t) → us(x), the steady state solution!

1.3. Summary: The Ten-Step Program

At this point we review the procedure discussed in the previous pages.

1. Find a steady-state solution us.
2. Change variables by v = u − us, transforming our IBVP with

inhomogeneous boundary conditions to an IBVP with homo-
geneous boundary conditions.

3. Apply separation of variables, using v(x, t) = X(x)T (t) to ob-
tain two ODEs, in x and in t, from

X ′′(x)

X(x)
=

T ′(t)

kT (t)
= −λ.

4. Solve for the t-dependence: T (t) = Ce−λKt.
5. Use an energy argument to determine sign of λ.
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6. Solve the x-ODE to determine pairs
(
λj, Xj

)
.

7. Create a formal solution v(x, t) by superposition and use or-
thogonality to determine the series coefficients.

8. Determine a formal solution for u = v + us.
9. Prove that the series expressions for u, ut, ux, and uxx converge

uniformly. Thus, u in series form is genuinely a solution.
10. Study long-term behavior. Show that

lim
t→∞

u(x, t) = us(x).

1.4. Challenge Problems for Lecture 8

Problem 1. Use separation of variables to try to solve the IBVP

ut = Kuxx : 0 < x < L, t > 0

u(0, t) = T1

ux(L, t) + hu(L, t) = hT2

}
: t > 0,

u(x, 0) = T3 : 0 < x < L.

(Hint: it won’t be pretty. Where do you run into trouble?)

Problem 2. Show that v(x, t) = u(x, t)− us(x) satisfies the IBVP

vt = Kvxx : 0 < x < L, t > 0

v(0, t) = 0
vx(L, t) + hv(L, t) = 0

}
: t > 0,

v(x, 0) = T3 − us(x) : 0 < x < L.

when u(x, t) satisifies

ut = Kuxx : 0 < x < L, t > 0

u(0, t) = T1

ux(L, t) + hu(L, t) = hT2

}
: t > 0,

u(x, 0) = T3 : 0 < x < L.

and us(x) is its steady state solution.

Problem 3. Use Maple to demonstrate that functions sin
(
x
√

λj

)
are

orthogonal when λj are the solutions of the transcendental equation
(1.8).

Problem 4. (Logan, p. 131) Consider a large, circular, tubular ring
of circumference 2L that contains a chemical of concentration c(x, t)
dissolved in water. Let x be the arc-length parameter with 0 < x < 2L.
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If the concentration of the chemical is initially given by c0(x), then
c(x, t) satisfies the IBVP

ct = Dcxx : 0 < x < 2L, t > 0

c(0, t) = c(2L, t)
cx(0, t) = cx(2L, t)

}
: t > 0,

c(x, 0) = f(x) : 0 < x < 2L.

These boundary conditions are called periodic boundary conditions,
and D is the diffusion constant. Apply the separation of variables
method and show that the associated Sturm-Liouville problem has
eigenvalues λn = (nπ/L)2 for n = 0, 1, 2, . . . and eigenfunctions Xn(x) =
An cos(nπx/L) + Bn sin(nπx/L) for n = 1, 2, . . . . Show that the con-
centration is given by

c(x, t) =
A0

2
+

∞∑
n=0

(An cos(nπx/L) + Bn sin(nπx/L)) e−n2π2Dt/L2

and find the formulae for the An and Bn.

1.5. Appendix

Here is the analytical argument that the Sturm-Liouville problem

(1.22) −X ′′ = λX, X(0) = 0, X ′(L) + hX(L) = 0

has only nonnegative eigenvalues. Suppose that λ < 0 and, so, write
λ = −ω2, where ω > 0. Then equation (1.22) becomes

X ′′ − ω2X = 0.

It is easily seen that the general solution is2

X = A cosh ωx + B sinh ωx.

The boundary condition X(0) = 0 forces

0 = X(0) = A cosh 0 + B sinh 0 = A,

and X(x) = B sinh ωx, which has derivative X ′(x) = Bω cosh ωx. The
second boundary condition now provides

0 = X ′(L) + hX(L) = Bω cosh ωL + hB sinh ωL.

Dividing by B,

0 = ω cosh ωL + h sinh ωL,

2The hyperbolic sine and cosine are defined as follows: cosh x = (ex + e−x)/2 and
sinhx = (ex − e−x)/2.
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or equivalently,

tanh ωL = −ω

h
.

It is not difficult to show that the only solution of this equation is
ω = 0, contradicting our assumption that ω > 0.

Therefore, it cannot be the case that λ is negative. That is, λ must
be nonnegative (λ ≥ 0).


