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LECTURE 9
Sturm-Liouville Theory—Part II

1.1. Outline of Lecture

• IBVP with nonhomogeneous boundary data
• Sturm-Liouville equations
• Orthogonality
• Eigenvalues and eigenvectors

1.2. The heat equation with nonhomogeneous
boundary data

In the previous lecture, we considered the initial boundary value prob-
lem (IBVP) with nonhomogeneous boundary data,

ut = Kuxx : 0 < x < L, t > 0,(1.1)

u(0, t) = T1

ux(L, t) + hu(L, t) = hT2

}
: t > 0,

u(x, 0) = T3 : 0 < x < L.

where h, T1, T2, T3, and K were (strictly) positive constants.
We transformed this IBVP into an IBVP with homogeneous bound-

ary data by finding the steady state solution to (1.1) and changing
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variables to v(x, t) = u(x, t)−us(x). The resulting IBVP had the form

vt = Kvxx : 0 < x < L, t > 0

v(0, t) = 0
vx(L, t) + hv(L, t) = 0

}
: t > 0,

v(x, 0) = T3 − us(x) : 0 < x < L.

A standard separation of variables argument then led to an ordi-
nary differential equation with boundary conditions: we called this
the Sturm-Liouville problem. We then showed that this problem had
infinitely many orthogonal solutions.

In this lecture, we seek more general conditions under which the
Sturm-Liouville ordinary differential equation has infinitely many or-
thogonal solutions. This study will lead to a description of the Sturm-
Liouville Theory.

1.3. Sturm-Liouville Equations

Definition 1.2. A Sturm-Liouville equation on x ∈ [a, b] is an
ordinary differential equation of the form

(1.3) (s(x)X ′(x))
′
+ (λρ(x)− q(x))X(x) = 0

where

(a) s(x), q(x), ρ(x) are given continuous functions defined on [a, b]
with s(x) and ρ(x) both positive-valued on (a, b), and

(b) λ is an unknown constant called the eigenvalue parameter.

The function ρ is called the weight function for the Sturm-Liouville
equation.

1.3.1. Examples of Sturm-Liouville equations

1. The Sturm-Liouville equation from Lecture 8,

(1.4) X ′′ = −λX
satisfies the formal definition (1.2) for s(x) = 1, q(x) = 0, and weight
function ρ(x) = 1.
2. Bessel’s equation,

(1.5) (xφ′(x))
′
+ λ (xφ(x)) = 0

is a Sturm-Liouville equation for x ∈ [1, 2] with s(x) = x, q(x) = 0,
and weight function ρ(x) = x.
3. Bessel’s equation

(xφ′(x))
′
+ λ (xφ(x)) = 0
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is not a Sturm-Liouville equation for x ∈ [−1, 1] since at x = 0 the
function s is not positive.

Definition 1.7. In the case that both

s(a)ρ(a) 6= 0 and s(b)ρ(b) 6= 0,

the Sturm-Liouville equation (1.3) is called regular. If the equation is
not regular, it is called singular.

1.3.2. Examples of regular and singular Sturm-Liouville equa-
tions

1. The eigenfunction equationX ′′ = −λX is regular since s(x)ρ(x) =
1 6= 0 for all x.

2. Bessel’s equation is regular for x ∈ [1, 2].
3. Bessel’s equation is singular for x ∈ [0, 1].

Sturm-Liouville equations naturally result from separation of vari-
ables applied to many IBVP of physical and mathematical interest.
Fortunately, these equations with appropriate boundary conditions pro-
vide a wealth of orthogonal functions. In fact, we will see that regular
Sturm-Liouville problems have an infinite number of eigenvalues, and
the corresponding eigenfunctions form a complete, orthogonal set.

1.3.3. Solutions of Sturm-Liouville equations

Definition 1.8. A solution of the Sturm-Liouville equation (1.3) is
defined to be a pair (X,λ) with X(x) a nonzero function and λ a
constant. The function X is called the eigenfunction and the corre-
sponding λ is called the eigenvalue.

1.3.3.1. Examples.

1. For the Sturm-Liouville equation X ′′ = −λX on [0, π] with
data X(0) = 0 and X(π) = 0, an eigenfunction is given by
X(x) = sin(nx) with corresponding eigenvalue λ = n2, for any
positive integer n.

2. For the Sturm-Liouville equation X ′′ = −λX on [0, L] with
data X(0) = 0 and X ′(L) + hX(L) = 0, an eigenfunction

is X(x) = sin
(
x
√
λ
)

with corresponding eigenvalue λ given

by a positive solution of the transcendental equation
√
λ +

h tan
(
L
√
λ
)

= 0.
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1.4. Orthogonality

Following Pinsky, we observe that “each Sturm-Liouville equation has
its own orthogonality relation, depending on the weight function ρ.”

Definition 1.9. Two functions X1 and X2 are orthogonal with re-
spect to the Sturm-Liouville equation (1.3) if

(1.10)

∫ b

a

ρ(x)X1(x)X2(x)dx = 0.

This condition is also described as being orthogonal with respect to
the weight function ρ.

Lemma 1.11. (Pinsky) Suppose that λ1 6= λ2 are distinct eigenvalues
of the Sturm-Liouville equation (1.3) with corresponding eigenvectors
X1 and X2. If the boundary conditions of (1.3) satisfy

s(b) (X1(b)X ′2(b)−X ′1(b)X2(b)) = s(a) (X1(a)X ′2(a)−X ′1(a)X2(a)) ,

then X1 and X2 are orthogonal with respect to the weight function ρ
given in (1.3).

The boundary condition in this lemma may be written more simply
as

(1.13) s(x) (X1(x)X ′2(x)−X ′1(x)X2(x))
∣∣b
a

= 0.

The proof of this lemma is very similar to the energy argument devel-
oped in the previous lecture. Let X1 and X2 be eigenfunctions corre-
sponding to distinct eigenvalues λ1 and λ2. Then,

(1.14) (sX ′i)
′
+ (λiρ− q)Xi = 0, for i = 1, 2.

Multiply equation (1.14) for i = 1 by X2 and integrate the result over
a < x < b to find

(1.15)

∫ b

a

X2 (sX ′1)
′
+

∫ b

a

X2 (λ1ρ− q)X1 = 0.

Integration by parts applied to the first term gives

(1.16)

∫ b

a

X2 (sX ′1)
′
= X2sX

′
1

∣∣b
a
−
∫ b

a

sX ′1X
′
2.

Substituting this form into equation (1.15) gives

(1.17) X2sX
′
1

∣∣b
a
−
∫ b

a

sX ′1X
′
2 +

∫ b

a

X2 (λ1ρ− q)X1 = 0
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Similarly, multiply equation (1.14) for i = 2 by X1 and integrate the
result over a < x < b to find

(1.18)

∫ b

a

X1 (sX ′2)
′
+

∫ b

a

X1 (λ2ρ− q)X2 = 0.

Substituting this form into equation (1.18) gives

(1.19) X1sX
′
2

∣∣b
a
−
∫ b

a

sX ′2X
′
1 +

∫ b

a

X1 (λ2ρ− q)X2 = 0

Now subtract equation (1.19) from (1.17) and apply the boundary con-
dition (1.13): all terms except for the final integrals will cancel, leaving

(λ1 − λ2)

∫ b

a

ρX1X2 = 0.

Hence, X1 and X2 are orthogonal with respect to ρ. This completes
the proof.

Notice that the proof of Lemma 1.11 depends on the form of the
boundary conditions. It is useful to study these conditions further to
determine when the lemma applies.

Definition 1.20. Separable boundary conditions have the form

cos(α)X ′(a)− sin(α)X(a) = 0(1.21)

cos(β)X ′(b)− sin(β)X(b) = 0(1.22)

where α and β are real constants.

Two functions X1 and X2 satisfying boundary conditions (1.21)
and (1.22) must necessarily satisfy the boundary condition required by
Lemma 1.11, since at both x = a and x = b, we may show

X1(x)X ′2(x)−X ′1(x)X2(x) = 0.

Exercise 1. Argue that the above statement is true.

Exercise 2. Show that the following cases are all examples of the
separable boundary conditions (1.21) and (1.22).

i. X(a) = 0 and X(b) = 0 with α = π/2 = β.
ii. X ′(a) = 0 and X ′(b) = 0 with α = 0 = β.
iii. X ′(a) = 0 and X ′(b) +X(b) = 0 with α = 0 and β = π/4.

Definition 1.23. Periodic boundary conditions have the form

X(a) = X(b) and X ′(a) = X ′(b)

for Sturm-Liouville equations satisfying s(a) = s(b).
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1.4.1. Example

For X ′′ = −λX with periodic boundary conditions X(0) = X(2π)
and X ′(0) = X ′(2π), the eigenvalues are λn = n2 with corresponding
eigenfunctions Xn(x) = An cos(nx) + Bn sin(nx) for n = 0, 1, 2, . . . .
Notice that λ0 = 0 is an eigenvalue since it corresponds to X0(x) = A0

which is not necessarily zero.
For a given Sturm-Liouville equation, if s(a) = s(b) = 0, then the

equation is singular. Further, any pair of solutions X1 and X2 hav-
ing continuous derivatives on [a, b] automatically satisfy the boundary
condition given in Lemma 1.11. Thus, any pair of such solutions are
orthogonal with respect to ρ.

1.5. Eigenvalues and Eigenvectors

1.5.1. Eigenvalues of a regular problem cannot be complex

(Write a proof here.)
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1.5.2. Non-negative eigenvalues

Since the eigenvalues are strictly real, we may use an energy argument
virtually identical to that in Lecture 8 to demonstrate the following.

Lemma 1.24. If (X,λ) is a solution of the Sturm-Liouville equation
(1.3) satisfying the boundary condition (1.13), then

λ

∫ b

a

ρX2 ≥
∫ b

a

qX2 +

∫ b

a

s(X ′)2.

If in addition q(x) ≥ 0, then all these eigenvalues are non-negative.

We have seen this in a straightforward argument by cases when given

(a) zero boundary data X(a) = 0 = X(b), or
(b) mixed boundary data X(a) = 0 = X ′(b).

1.5.3. Completeness of eigenfunctions

We will discuss completeness of the eigenfunctions only in the case of
a regular Sturm-Liouville problem with separable boundary data.

Theorem 1.25. (Pinsky) There exists an infinite sequence of solutions
(Xj, λj) of the regular Sturm-Liouville problem

(s(x)X ′(x))
′
+ (λρ(x)− q(x))X(x) = 0

with separable boundary conditions

cos(α)X ′(a)− sin(α)X(a) = 0 and cos(β)X ′(b)− sin(β)X(b) = 0.

If f(x) is a smooth1 function on [a, b] that satisfies these boundary
conditions, then the following series is uniformly convergent on [a, b]:

∞∑
j=1

AjXj(x) = f(x)

where the Fourier coefficients are given by the formulas

(1.27) Aj

∫ b

a

X2
j (x)ρ(x)dx =

∫ b

a

f(x)Xj(x)ρ(x)dx

for j = 1, 2, . . . .

We will not prove this theorem. However, one key idea in its proof is
to eliminate the mixed term (s(x)X ′(x))′ in the Sturm-Liouville equa-
tion by a clever change of variables.

Theorem 1.25 is particularly helpful because it allows us to expand
an arbitrary smooth function into a convergent series of eigenfunctions

1By “smooth” we mean continuous with infinitely many continuous derivatives.
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of a given Sturm-Liouville problem. This is exactly what we need to
compute the Fourier coefficients in an IBVP formal solution so that
the initial data will be satisfied.

Notice that this theorem does not prescribe the sign of the eigen-
values of the problem.

1.5.4. Example

Consider the Sturm-Liouville problem on 0 < x < 2,

−X ′′ = λX

X(0) + 2X ′(0) = 0, 3X(2) + 2X ′(2) = 0.

Consider the possible eigenvalues, beginning with λ = 0. In this case
X(x) = Ax + B. From the boundary conditions, then, B + 2A = 0
and 8A + 3B = 0. The only solution to this system is A = B =
0; thus, λ = 0 is not an eigenvalue. Now let λ = −ω2 so that the
corresponding eigenfunction is X(x) = A cosh(ωx) + B sinh(ωx). The
boundary conditions become

A+ 2ωB = 0

and

(3 cosh(2ω) + 2ω sinh(2ω))A+ (3 sinh(2ω) + 2ω cosh(2ω))B = 0.

Appealing to linear algebra, we see that these conditions may be writ-
ten in matrix form and that the system will have a nonzero solution
when the determinant of the coefficient matrix is zero. Hence,

(1.28) tanh(2ω) =
4ω

3− 4ω2
.

Exercise 3. Verify that the boundary conditions in this example lead
to the stated equations for A and B. Then verify that ω must satisfy
this transcendental equation.

Exercise 4. Use Maple to compute the solution of equation (1.28).

The last exercise will demonstrate that there are exactly two nonzero
solutions to this equation, ±.39. Hence there is only one negative eigen-
value, λ = −(±.39)2 = −.1521. Since the theorem guarantees infinitely
many eigenvalues, we see that there must exist infinitely many positive
eigenvalues.

Exercise 5. Find the eigenvalue relation and compute (numerically)
the first five eigenvalues.
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1.6. Summary

(Following Logan) The theory developed here may be summarized as
follows. For a regular Sturm-Liouville problem with separable bound-
ary conditions, there exist infinitely many real eigenvalues. The eigen-
functions corresponding to distinct eigenvalues are orthogonal, and the
set of all eigenfunctions is complete in the sense that every square-
integrable function f can be expanded in terms of the eigenfunctions.

1.7. Challenge Problems for Lecture 9

Problem 1. (Logan) Show that the Sturm-Liouville problem

−X ′′(x) = λX(x) : 0 < x < L

X ′(0) = 0 and X(L) = 0

has eigenvalues

λj =

(
(1 + 2j)πx

2L

)2

with corresponding eigenfunctions

Xj(x) = cos
(1 + 2j)πx

2L

for j = 1, 2, . . . .

Problem 2. (Logan) Find the eigenvalues and eigenfunctions for the
following problem with periodic boundary conditions:

−X ′′(x) = λX(x) : 0 < x < L

X(0) = X(L) and X ′(0) = X ′(L).

Problem 3. (Logan) Consider the regular Sturm-Liouville problem

−X ′′(x) + q(x)X(x) = λX(x), 0 < x < L,

X(0) = X(L) = 0

where q(x) > 0 on [0, L]. Show that if λ and X are an eigenvalue and
its associated eigenfunction, then

λ =

∫ L
0

((X ′)2 + qX2) dx

‖X‖2
.

Is λ > 0? Can X(x) = constant be an eigenfunction?
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Problem 4. Prove that the eigenvalues are real in the general case

(sX ′)
′
+ (λ− q)X = 0

with boundary conditions satisfying

cos(α)X ′(a)− sin(α)X(a) = 0,

cos(β)X ′(b)− sin(β)X(b) = 0.


