PCMI UFP Program
July 3, 2003

Andrew J. Bernoff
Jon Jacobsen

PDE's \& Maple Lab 1

1 Easy

You can download a MAPLE worksheet that does these problems from:
http://www.math.hmc.edu/~ajb/PCMI/PDE_Lab1.mws

1. Consider the convection equation

$$
\begin{equation*}
u_{t}+c u_{x}=0, \quad x \in \mathbb{R}, t>0 \tag{1}
\end{equation*}
$$

and let $F(x)=e^{-x^{2}}$.
(a) Show $u(x, t)=F(x-c t)$ solves (1).
(b) Let $c=1$. Plot $u(x, t)$ at time $t=0,1,2$ on the same axes.
(c) Plot the solution surface $u(x, t)$ for $-6<x<6$ and $0 \leq t<2$.
(d) Create an animation of the solution $F(x-t)$ for $0<t<2$.
2. Consider Laplace's equation in \mathbb{R}^{2} :

$$
\begin{equation*}
\Phi_{x x}+\Phi_{y y}=0, \quad(x, y) \in \mathbb{R}^{2} \tag{2}
\end{equation*}
$$

and let $F(x, y)=e^{-x} \cos y$.
(a) Show F solves (2).
(b) Plot $F(x, y)$ for $0<x<1$ and $0<y<2 \pi$.
3. Consider the function $f(x)=x$ on the interval $[0, \pi]$. The Fourier sine series for f is given by

$$
\begin{equation*}
f(x)=2 \sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{m} \sin m x . \tag{3}
\end{equation*}
$$

Plot the function f together with its Fourier approximation taking 2, $4,8,16$ and then 32 terms of the series.

2 Medium

1. Consider the wave equation

$$
\begin{equation*}
u_{t t}=c^{2} u_{x x}, \quad x \in \mathbb{R}, t>0, \tag{4}
\end{equation*}
$$

and let $F(x)=e^{-x^{2}}$.
(a) Show $u(x, t)=\frac{1}{2}(F(x-c t)+F(x+c t))$ solves (4).
(b) Let $c=1$. Plot $u(x, t)$ at time $t=0,1,2$ on the same axes.
(c) Plot the solution surface $u(x, t)$ for $-6<x<6$ and $0 \leq t<2$.
(d) Create an animation of the solution $u(x, t)$ for $0<t<2$.
2. Consider the heat equation

$$
\begin{equation*}
u_{t}=u_{x x}, \quad x \in \mathbb{R}, t>0, \tag{5}
\end{equation*}
$$

and let $u(x, t)=\frac{1}{\sqrt{4 \pi(t+1)}} e^{-\frac{x^{2}}{4(t+1)}}$.
(a) Show $u(x, t)$ solves (5).
(b) Plot $u(x, t)$ at time $t=0,1,2$ on the same axes.
(c) Plot the solution surface $u(x, t)$ for $-6<x<6$ and $0 \leq t<2$.
(d) Create an animation of the solution $u(x, t)$ for $0<t<2$.
(e) Show that $\int_{-\infty}^{\infty} u(x, t) d x=1$ for each $t>0$.
3. Consider the following initial boundary value problem for the heat equation:

$$
\begin{cases}u_{t}=u_{x x}, & x \in(0, \pi), t>0 \tag{6}\\ u(0, t)=u(\pi, t)=0, & t>0 \\ u(x, 0)=x, & x \in[0, \pi]\end{cases}
$$

The Fourier series solution to this is given by

$$
u(x, t)=\sum_{m=1}^{\infty} \frac{2(-1)^{m+1}}{m} e^{-m^{2} t} \sin m x
$$

Plot the 16 term approximation to the solution $u(x, t)$ at time $t=$ $0,1,2$. Create an animation of the solution $u(x, t)$ for $0<t<4$.

3 Challenge

1. Harmonic Polynomials.

(a) Show $F(x, y)=x^{3}-3 x y^{2}$ is harmonic on \mathbb{R}^{2}. Plot F.
(b) Find all cubic harmonic polynomials, i.e., all harmonic polynomials of the form $H(x, y)=a x^{3}+b x^{2} y+c x y^{2}+d y^{3}$.
2. d'Alembert's Solution. Let $u(x, t)$ be defined by

$$
\begin{equation*}
u(x, t)=\frac{1}{2} \int_{x-t}^{x+t} e^{-s^{2}} d s \tag{7}
\end{equation*}
$$

(a) Show $u(x, t)$ solves the wave equation $u_{t t}=u_{x x}$. What is the initial displacement and velocity?
(b) Plot $u(x, t)$ at time $t=0,1,2$ on the same axes.
(c) Plot the solution surface $u(x, t)$ for $-6<x<6$ and $0 \leq t<2$.
(d) Create an animation of the solution $u(x, t)$ for $0<t<2$.
3. The Erf Function. Let $v(x)$ be defined by

$$
\begin{equation*}
v(x)=\int_{0}^{x} e^{-s^{2}} d s \tag{8}
\end{equation*}
$$

(a) Show $u(x, t)=\frac{1}{2}+\frac{1}{\sqrt{\pi}} v\left(\frac{x}{\sqrt{4 t}}\right)$ solves the heat equation $u_{t}=u_{x x}$.
(b) Plot $u(x, t)$ at time $t=.5,1,2$ on the same axes. What is the initial temperature distribution?
(c) Plot the solution surface $u(x, t)$ for $-6<x<6$ and $0 \leq t<2$.
(d) Create an animation of the solution $u(x, t)$ for $0<t<2$.
(e) Show $u_{x}(x, t)$ also solves the heat equation. Find and plot this solution. What is its initial temperature distribution?

