Induction and Recursion

This problem session is modelled after the HMC Putnam Preparation Problem Solving Seminar. Additional resources (and this problem set) can be found at:
http://www.math.hmc.edu/~ajb/PCMI/problem_solve.html
A1: The Fibonacci numbers are defined by the two-term recurrence relationship

$$
F_{1}=1 \quad F_{2}=1 \quad F_{n+2}=F_{n+1}+F_{n} \quad \text { for } \quad n=1,2,3, \ldots
$$

Show
(a) $\quad F_{1}+F_{3}+\cdots+F_{2 n-1}=F_{2 n}$
(b) $\quad F_{2}+F_{4}+\cdots+F_{2 n}=F_{2 n+1}-1$
(c) $\quad F_{1}^{2}+F_{2}^{2}+\cdots+F_{n}^{2}=F_{n} F_{n+1}$

A2: Show that every number in the sequence

$$
1007,10017,100117,1001117, \ldots
$$

is divisible by 53 .
(Engel)
A3: The sequence $G_{n}=F_{2 n}$ consists of every other Fibonacci number; that is $G_{1}=F_{2}=1$, $G_{2}=F_{4}=3$ and so forth. Show that G_{n} satisfies a linear recurrence of the form

$$
G_{n}=a G_{n-1}+b G_{n-2}
$$

where a and b are constants to be determined.
(Vakil)
A4: Let S_{n} be the number of subsets of $\{1,2, \ldots, n\}$ that contain no two consecutive elements of $\{1,2, \ldots, n\}$. So, for example, if $n=2$, then $\{1\},\{2\}$ and the empty set, $\}$, are acceptable but $\{1,2\}$ is not, so $S_{2}=3$. Determine S_{n}.
A5: The mathematician Edouard Zeckendorf explored writing positive integers as sums of distinct Fibonacci numbers. For example:

$$
1=F_{1} \quad 28=2+5+21=F_{2}+F_{5}+F_{8} \quad 100=3+8+89=F_{4}+F_{6}+F_{11}
$$

(a) Show that every number can be written as a sum of distinct Fibonacci numbers.
(b) Show that every number can be written as a sum of distinct, non-consecutive Fibonacci numbers.

And for a little bit of variety...
A6: Not quite origami . . . Cut the central square out of a 5×5 grid of 25 squares. Can you cut the resulting shape into two pieces that can be arranged, by various folds, into the surface of a $2 \times 2 \times 2$ cube ?
(Quantum Magazine)

Hints:

[^0]
[^0]: 1. These identities can be shown by induction. What is the base case? What is the induction hypothesis?
 2. Can you find a recursion relationship for this sequence? How does this help?
 3. You can solve for a and b from two examples. How can you prove the result?
 4. Compute S_{n} for a few examples. Do you see a pattern?
 5. The greedy algorithm works here.
