Pizza & Problem Solving # 1

PCMI Thursday, July 1, 2010 Andrew J. Bernoff Harvey Mudd College

Induction and Recursion

This problem session is modelled after the HMC Putnam Preparation Problem Solving Seminar. Additional resources (and this problem set) can be found at:

http://www.math.hmc.edu/~ajb/PCMI/problem_solve.html

A1: The Fibonacci numbers are defined by the two-term recurrence relationship

 $F_1 = 1$ $F_2 = 1$ $F_{n+2} = F_{n+1} + F_n$ for $n = 1, 2, 3, \dots$

Show

(a)
$$F_1 + F_3 + \dots + F_{2n-1} = F_{2n}$$

(b)
$$F_2 + F_4 + \dots + F_{2n} = F_{2n+1} - 1$$

(c) $F_1^2 + F_2^2 + \dots + F_n^2 = F_n F_{n+1}$

A2: Show that every number in the sequence

 $1007, 10017, 100117, 1001117, \ldots$

is divisible by 53.

A3: The sequence $G_n = F_{2n}$ consists of every other Fibonacci number; that is $G_1 = F_2 = 1$, $G_2 = F_4 = 3$ and so forth. Show that G_n satisfies a linear recurrence of the form

$$G_n = aG_{n-1} + bG_{n-2}$$

where a and b are constants to be determined.

A4: Let S_n be the number of subsets of $\{1, 2, ..., n\}$ that contain no two consecutive elements of $\{1, 2, ..., n\}$. So, for example, if n = 2, then $\{1\}$, $\{2\}$ and the empty set, $\{\}$, are acceptable but $\{1, 2\}$ is not, so $S_2 = 3$. Determine S_n .

A5: The mathematician Edouard Zeckendorf explored writing positive integers as sums of distinct Fibonacci numbers. For example:

$$1 = F_1 \qquad 28 = 2 + 5 + 21 = F_2 + F_5 + F_8 \qquad 100 = 3 + 8 + 89 = F_4 + F_6 + F_{11}$$

(a) Show that every number can be written as a sum of distinct Fibonacci numbers.

(b) Show that every number can be written as a sum of distinct, non-consecutive Fibonacci numbers.

And for a little bit of variety...

A6: Not quite origami . . . Cut the central square out of a 5×5 grid of 25 squares. Can you cut the resulting shape into two pieces that can be arranged, by various folds, into the surface of a $2 \times 2 \times 2$ cube? (Quantum Magazine)

Hints:

(Engel)

(Vakil)

^{1.} These identities can be shown by induction. What is the base case? What is the induction hypothesis?

^{2.} Can you find a recursion relationship for this sequence? How does this help?

^{3.} You can solve for a and b from two examples. How can you prove the result?

^{4.} Compute S_n for a few examples. Do you see a pattern?

^{5.} The greedy algorithm works here.