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MAPLE Challenge Problems

These problems are designed to encourage the use of MAPLE, other computational aids, and
web resources.

A1: Consider the function

fN(x) =
N∑

n=1

sin(nx)

n
0 < x < π .

a) Suppose these are partial sums of a Fourier series; can you guess the function f(x) they are
converging to?

b) Determine limN→∞ fN(π/2). It may help if you evaluate sin(nx) and let MAPLE evaluate
the resulting infinite series.

c) Determine the value x∗ where fN(x) reaches a maximum. You should be able to find the
answer explicitly.

d) Determine limN→∞ fN(x∗). You might try evaluating the limit as a Riemann sum.

e) Relate your result in (d) to Gibb’s phenomena.

A2: The sequence an satisfies the recurrence relationship

a1 = 1 a2 = 1 a3 = 4 an+3 = 2an+2 + 2an+1 − an for n = 1, 2, 3, . . .

Prove that an is a perfect square for all n.

A3: (a) What are the last two digits of 32003 ? 320032003
?

(b) What is the last non-zero digit of 2003! ?

A4: Simplify the expression:

x =

(
2 +

10

3
√

3

)1/3

+

(
2− 10

3
√

3

)1/3

(Hess)

A5: Find positive real numbers x1, x2, . . . xn such that their sum is 2003 and their product is
as large as possible.

A6: Let x1 = 1 and for m ≥ 1 let xm+1 = (m+3/2)−1∑m
k=1 xkxm+1−k. Evaluate limm→∞ xm/xm+1.

(American Mathematical Monthly)

A7: What arrangement of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 into the product of five two digit
numbers yields the largest product? For example, 10× 23× 45× 67× 89 = 61, 717, 050.

(Kornhauser, Velleman & Wagon)


