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Abstract

Modeling Faraday Excitation of a Viscous Fluid

by Bradley Forrest

May 2002

Faraday Excitation is the occurrence of growing surface waves when a fluid is subjected

to periodic forcing. Given a fluid, Faraday Excitation will occur for some, but not all,

values of forcing frequency and amplitude. In this thesis, a viscous fluid is modeled

through linear stability analysis of the Navier-Stokes equation and predictions for the

conditions when Faraday Excitation will occur are given. Predictions for the scaling

between excitation wavelength and forcing frequency are also given. This information

will be used in future work to predict droplet size for an experiment using ultrasound

to produce aerosols being conducted by T. D. Donnelly’s research group. For fluids

with low non dimensional wave number the scaling between excitation wave number,

k, and the forcing frequency ω was determined to be k = .62616(σ/ρ)
−1
3 ω

2
3 and

k = .47206ν
−1
2 ω

1
2 for high non dimensional wave number.
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Chapter 1

Introduction

The study of fluid motion is a rich subject requiring both mathematical acumen

and physical intuition. Many basic intuitive facts about fluid flow are challenging to

confirm mathematically. Similarly, mathematical models of fluids often shed light on

unforeseen and unintuitive behaviors. This thesis examines the behavior of a fluid

subjected to an oscillating vertical acceleration by utilizing mathematical modeling

methods. In some cases, an oscillating fluid exhibits surface waves. This behavior

is known as Faraday Excitation. The main goal of this thesis is to predict the rela-

tionship between the wavelength of surface waves and the acceleration’s oscillation

frequency for any excited fluid. This relationship has an important role in ultrasonic

atomization, which is discussed in Section 1.1. A review of current literature on Fara-

day Excitation is given in Section 1.2. Section 1.3 explains the basic structure and

assumptions used by the mathematical models in describing the physical system. The

last section of this chapter describes the content of each of the following chapters.

1.1 Connection to Ultrasonic Atomization and Droplet Experimenta-

tion

In some cases of Faraday Excitation, the excited surface waves grow in amplitude

over time. This amplitude growth causes the fluid surface to stretch, and eventually

to become unstable. At this point, a droplet is ejected from the apex of the surface

wave. This droplet ejection is referred to as ultrasonic atomization in the case of
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sufficiently small droplets. Over many experiments, it has been established that the

radius of the ejected particle varies only by a constant from the wavelength of the

fluid surface waves. [12] [15] [5] [6] Thus, the relationship examined in this work can

be used to predict the size of ejected droplets.

In ultrasonic atomization literature, the value of the constant relating the wave-

length of an excited surface wave to the radius of a droplet ejected by that wave has

not been determined with significant precision for deep fluid waves. With improved

precision due to MIE scattering particle sizing techniques, T. D. Donnelly’s experi-

mental physics group has been measuring the size of droplets made through Faraday

Excitation. Combining these measurements with the predictions made in this work

will yield a more precise value for the particle sizing constant, and these results will

be put together in future work.

1.2 Literature Review

Faraday Excitation is not unfamiliar ground for fluid dynamics researchers. In 1954,

Benjamin and Ursell showed that the surface of an ideal fluid under excitation could

be successfully modeled with the Mathieu Equation.[1] In this analysis, Benjamin

and Ursell assumed that the fluid was weakly viscous, that the fluid’s viscosity could

be treated as as a small perturbation. A full treatment of Faraday Excitation for

viscous fluids requires the application of numerical methods. Only in the last 10-15

years has the computing speed necessary to carry such computations become widely

available. In 1994, Kumar and Tuckerman present a linear stability analysis of viscous

excitation of two fluids. [9] Parameter regions for surface instability, growing surface

waves, are calculated for an ideal fluid and an example viscous fluid. Beyer showed

that the fully viscous problem could be reduced to a modified Mathieu equation.

[3] Besson and Weizhong each extended Kumar and Tuckerman’s work to case of

two frequency forcing, and successfully tested these theoretical predictions against
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experimental results. [2] [16] Many researchers have found new ways to formulate

models of Faraday Excitation. In 1997, Cerda showed a relationship between Faraday

Excitation and Rayleigh-Taylor instability. [4] Miles formulated the Faraday problem

in terms of the impedance of the liquid. [13]

In this work, the original linear stability analysis of this problem is used to predict

the relationship between the wavelength of surface waves and the forcing frequency.

In the body of work on Faraday Excitation, this relationship has not been explicitly

calculated, but the power laws that relate the parameters can be solved for through

dimensional reasoning. It is the constants in these equations that are the goal of this

work, as these constants will be necessary in determining the constant that relates

droplet size to surface wavelength as described in Section 1.1.

1.3 Description of Physical Situation and Assumptions About Fluid

Consider a viscous fluid in a deep container, subjected to an oscillating vertical forcing

acceleration a cos(ωt).

The models in this work assume that the container is infinitely deep, which is

an accurate approximation when the container depth is much greater than the wave-

length of surface waves. In order to describe this fluid, assume that the fluid has the

following constant fluid parameters:

Physical Fluid Parameters

ν ≡ kinematic viscosity

σ ≡ surface tension

ρ ≡ density

In most cases, these parameters are constant for a fluid, assuming that the fluid is
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not subjected to a temperature gradient. Additionally, to describe the forcing and

wavelength of the surface waves, define constant control parameters as follows:

Control Parameters

ω ≡ forcing frequency

a ≡ input acceleration

k ≡ wave number of surface waves = 2π/λ,

where λ is the wavelength of the surface waves. In this thesis, the fluid is treated as

two-dimensional. Additionally, effects of the edges of the fluid container have been

neglected, and hence it is assumed that the horizontal dimension is infinite. Also, the

the effect of gravity has been neglected.

1.4 The Chapters Ahead

There is substantial background knowledge necessary before the linear stability anal-

ysis for an excited viscous fluid can be understood. The first few chapters build the

necessary background information. Chapter 2 introduces Floquet Theory, which is

an indispensable tool utilized in investigating the ordinary and partial differential

equations the arise naturally in the stability analysis. In Chapter 3, Faraday Exci-

tation of weakly viscous fluids is examined through stability analysis of the Mathieu

Equation. Parameter regions yielding growing solutions are given. Chapter 4 details

how Fourier methods can be used to enhance the stability analysis shown in Chapter

3. In Chapter 5, the equations needed for the linear stability analysis of an excited

highly viscous fluid are derived from first principles. These equations, which include

the Navier-Stokes equation, kinematic condition, and surface force balance equation,

are known collectively as the hydrodynamic system. Chapter 6 explores solutions to

the hydrodynamic system without including forcing. In Chapter 7, solutions to the
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hydrodynamic system are investigated with forcing included. Additionally, predic-

tions of the wave number’s scaling with the forcing frequency for both high and low

viscosity are given. Concluding commentary is given in Chapter 8.



Chapter 2

Floquet Theory

Before attacking the physical problem, it is necessary to develop the tools that

will aide in solving the ordinary and partial differential equations that occur in the

problem. One such tool is Floquet theory, which applies linear algebra methods to

a particular matrix system of differential equations. In this chapter, several impor-

tant theorems in Floquet theory are proved. The proof presented in this chapter are

adapted from those given by Jordan in Nonlinear Ordinary Differential Equations. [8]

Consider a system of ODEs: dZ
dt

= P (t)Z where Z =





z1

z2



, and P (t) is a N ×N

matrix with minimum period τ .

Definition 1: Let φ1(t), φ2(t), . . . φn(t), be linearly independent solutions to the

system described above. Then Φ(t)= (φ1(t), φ2(t), . . . , φn(t)), the N ×N matrix with

these solutions as its columns, is known as a fundamental matrix.

Theorem 2.0.1 (Floquet’s Theorem) The regular system dZ
dt

= P (t)Z where P (t)

is a N × N matrix with minimum period τ , has a non trivial solution Z = χ(t) such

that χ(t + τ) = µχ(t), where µ is a constant.

Proof: Let Φ(t) be a fundamental matrix of the system. This is a matrix with

a set of linearly independent solutions to the system as its columns. Note that
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dΦ
dt

(t)= P (t)Φ(t), and dΦ
dt

(t+τ) = P (t+τ)Φ(t+τ). Since P is periodic P (t) = P (t+τ),

we have dΦ
dt

(t+τ) = P (t)Φ(t+τ). Φ(t+τ) is also a fundamental matrix of the system

and hence the columns of Φ(t+τ) can be written as linear combinations of the columns

of Φ(t). Another way to think about this is that the columns of Φ(t) are a basis for the

solution space of the system of ODEs. Hence, the solutions that make up Φ(t+τ) can

be written in this basis. Let Φ(t)= φij(t), and hence φij(t+τ) =
∑n

k=1 φik(t)ekj, where

ekj represents a matrix of constants, let this E be this matrix. Thus, Φ(t+τ) = Φ(t)E.

Note that since Φ(t), and Φ(t + τ) are fundamental matrices, they are both non sin-

gular, thus det(Φ(t)) 6= 0 and det(Φ(t + τ)) 6= 0. This implies that E is non singular

as det(Φ(t)) = det(Φ(t + τ)det(E), meaning that det(E) 6= 0.

Consider µ an eigenvalue of E, and S, µ′s eigenvector. Therefore, (E − Iµ)S = 0,

and µS = ES. Let χ(t) = Φ(t)S. χ(t) is a linear combination of basis vectors of the

solution space of the system. Thus, χ(t) is also a solution vector. Further

χ(t + τ) = Φ(t + τ)S

= Φ(t)ES

= Φ(t)µS

= µχ(t)

¤

Definition 2: A solution satisfying the equation χ(t + τ) = µχ(t) is known as a

normal solution.

Definition 3: The eigenvalues, µi of the matrix E as defined above are known as

the characteristic numbers of the system.

Definition 4: Let eρiτ = µi. The ρi’s are known as the characteristic exponents
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of the system.

Theorem 2.0.2 Let E be an N × N matrix such that Φ(t + τ) = Φ(t)E where Φ(t)

is the fundamental matrix of a regular system of ODEs that meets the conditions of

Theorem 1. If E has n distinct eigenvalues, µ1, ..., µn, then the system has n linearly

independent normal solutions of the form Zi= pi(t)e
ρit where µi = eρiτ and the pi(t)

are functions with period τ .

Proof: For each µi there exists a solution xi(t) satisfying xi(t + τ) = µixi(t) =

eρiτxi(t). Hence, e−ρitxi(t+τ) = eρi(τ−t)xi(t), and further e−ρi(t+τ)xi(t+τ) = eρitxi(t).

Letting, pi(t) = e−ρitxi(t), we see that pi(t) is periodic and xi(t) = pi(t)e
ρit. ¤

Theorem 2.0.3 (Abel’s Theorem) Let Φ(t) be a matrix of solutions of dZ
dt

= P (t)

Z. Then for any time to, W (t) = W (to)e
∫ t

to
tr(P (s))ds. In this equation, W (t) =

det(Φ(t)) is the Wronksian of the set of solutions that comprise Φ(t), and tr(P (t)) is

the trace of P (t).

Proof: If the solutions that make up Φ(t) are linearly independent, then det(Φ(t)) =

0, and so W (t) = W (to) = 0.

If the solutions are linearly independent then Φ(t) is a fundamental matrix of the

system, let Φ(t) = (φij(t)). Let ∆k = Φ(t) except for the kth row which is replaced

by
dφkj

dt
(t). Lets examine dW

dt
(t) = d(det(Φ))

dt
(t). This is equivalent to the sum of the

determinants of the n δk matrices,
∑n

k=1 det(δk). For notational simplicity, we will

examine the case when Φ(t) is a 2 × 2 matrix, since the proof is easily generalizable.
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dW
dt

(t) =
∑2

k=1 det(δk) = det(δ1) + det(δ2) =

∣

∣

∣

∣

∣

∣

dφ11

dt
dφ12

dt

φ21 φ22

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

φ11 φ12

dφ21

dt
dφ22

dt

∣

∣

∣

∣

∣

∣

Note that dΦ(t)
dt

= P (t)Φ(t), so dφij
dt

(t) =
∑2

k=1 pikφkj(t). Thus

∣

∣

∣

∣

∣

∣

dφ11

dt
dφ12

dt

φ21 φ22

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

φ11 φ12

dφ21

dt
dφ22

dt

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑2
k=1 p1kφk1

∑2
k=1 p1kφk2

φ21 φ22

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

φ11 φ12

∑2
k=1 p2kφk1

∑2
k=1 p2kφk2

∣

∣

∣

∣

∣

∣

=

p11

∣

∣

∣

∣

∣

∣

φ11 φ12

φ21 φ22

∣

∣

∣

∣

∣

∣

+ p12

∣

∣

∣

∣

∣

∣

φ21 φ22

φ21 φ22

∣

∣

∣

∣

∣

∣

+ p21

∣

∣

∣

∣

∣

∣

φ11 φ12

φ11 φ12

∣

∣

∣

∣

∣

∣

+ p22

∣

∣

∣

∣

∣

∣

φ11 φ12

φ21 φ22

∣

∣

∣

∣

∣

∣

=

p11W (t) + 0 + 0 + p22W (t) = (p11 + p22)W (t) = tr(P (t))W (t)

Hence, dW
dt

(t) = tr(P (t))W (t), which is the differential equation for W (t) that yields

the solution W (t) = W (to)e
∫ t

to
tr(P (s))ds. ¤

Theorem 2.0.4 For the system dZ
dt

= P (t)Z, where P (t) has minimum period τ , let

µ1µ2 . . . µn be the characteristic numbers of the system. Then µ1µ2 . . . µn = e
∫ τ
0

tr(P (s))ds.

Proof: Let Ψ(t) be the fundamental matrix with initial condition Ψ(0) = I. Then

for matrix E as defined in the proof of theorem 2.1.1, Ψ(τ) = Ψ(0)E = E. Recalling

that the characteristic numbers are the eigenvalues of E, det(E−µI) = (µ1 −µ)(µ2 −
µ) . . . (µn − µ), when µ = 0, det(E) = µ1µ2 . . . µn. Hence, µ1µ2 . . . µn = det(E) =
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det(Ψ(τ)) = W(τ). By applying Theorem 2.1.3, with t = τ , and to = 0 we find that

µ1µ2 . . . µn = W (τ) = W (0)e
∫ τ
0

tr(P (s))ds = e
∫ τ
0

tr(P (s))ds. ¤



Chapter 3

Mathieu Model

This chapter presents the Mathieu model for the physical system. It should be

noted that this model is only valid for a weakly viscous fluid. Hence, results from the

Mathieu model yield an asymptotic expectation to check more general results against,

but are not in and of themselves productive.

3.1 Equation Introduction

Assuming that the forcing is not over-damped by the fluid’s viscosity, wave excitation

will occur. In particular, it will occur in the form η(x, t) = ζ(t)eikx, where η is the

height above the fluid level at rest, and x, the horizontal dimension, can be removed

in this way because this dimension is infinite. Thus any physical phenomenon must

be symmetric with respect to this dimension.

For weakly viscous fluids, the following equation governs this wave motion:

d2ζ

dt2
+ 4νk2dζ

dt
+ (k3σ/ρ − ak cos(ωt))ζ = 0. (3.1)

This is the damped Mathieu Equation, which describes the wave motion under the

deep fluid and weak viscous effects limit.[10]

It is helpful to consider the analog of a damped harmonic oscillator in order to

understand the different terms in Equation (3.1). The equation governing the motion

of a damped harmonic oscillator with damping γ, and forcing amplitude ξ cos(ωt) is:

d2θ

dt2
+ γ

dθ

dt
+ (Ω2 − ξω2 cos(ωt))θ = 0,
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where Ω is the oscillator’s natural oscillation frequency, and θ is the angle of the

oscillator from rest. From this analog, we can see that the fluid’s viscosity acts to

damp wave oscillations while the surface tension and density set the natural oscilla-

tion frequency of the fluid.

3.2 Non-Dimensionalization and DE Simplification

To make this equation easier to handle, it is helpful to non-dimensionalize the coef-

ficients. Non-dimensionalizing these coefficients is also a good idea because it allows

simple comparisons to made between different physical experiments.

Non-dimensionalizing is accomplished by scaling time, letting T = ωt, which gives

ω d
dT

= d
dt

and ω2 d
dT 2 = d

dt2
. Applying these substitutions and dividing through by ω2

yields:

d2ζ

dT 2
+ (4νk2/ω)

dζ

dT
+ (k3σ/ρω2 − (ak/ω2) cos(T ))ζ = 0. (3.2)

This equation is not solvable by any standard means, so we will pursue a nu-

merical approximation. Before applying any such numerical solver, the ODE must

be simplified significantly. The first step in simplifying this differential equation is

applying the substitution:

ze−2νk2T/ω = ζ. (3.3)

This change of variables gives the following:

d2z

dT 2
+ (k3σ/ρω2 − 4ν2k4/ω2 − (ak/ω2) cos(T ))z = 0. (3.4)

The damping and oscillation terms from Equation (3.2) have been coupled to

create Equation (3.4). The oscillation term in Equation (3.4) accounts for the removed
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damping. Letting

A = k3σ/ρω2 − 4ν2k4/ω2,

and

B = −ak/ω2

yields the following simplification:

d2z

dT 2
+ (A + B cos(T ))z = 0. (3.5)

This equation is now only dependent upon the parameters A and B. In this form,

the solutions to the equation can be investigated using a numerical solver for points

on the AB plane.

3.3 Application of Floquet Theory

Equation (3.5) can be written as a system of ODEs, as follows:





dz1

dT

dz2

dT



 =





0 1

−A − B cos(T ) 0









z1

z2





This is a specific case of a more general form of the ODE system

dZ̄

dT
= P (T )Z̄(T ), (3.6)

where

Z̄(T ) =





z1(T )

z2(T )




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and P (T ) is a matrix with minimum period τ , which is 2π in the specific case of

the Mathieu Equation. For ODEs of this form, results from Floquet Theory can be

applied to help characterize solutions.

Theorem 2.1.2 shows that the solutions to this system are of the form

Z̄i(T ) = pi(T )eαiT , (3.7)

where pi(T ) is some τ periodic column vector, and the subscript i denotes the ex-

istence of multiple linearly independent solutions. For each solution, αi is known

as the characteristic exponent. To each characteristic exponent, there corresponds a

characteristic number, µi, defined as

µi = eαiτ . (3.8)

Theorem 2.1.4 relates the product of the characteristic numbers of the system to the

trace of the coefficient matrix P (T ) in the following manner:

µ1µ2 . . . µn = e
∫ τ
0

tr(P (S))dS. (3.9)

Applying these results to the specific case of the Mathieu Equation, first we note

that the Mathieu Equation has only two linearly independent solutions, and thus only

two characteristic numbers. Applying Equation (3.9) yields,

µ1µ2 = 1, (3.10)

and hence,

µ2 = 1/µ1.
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3.4 Time Reversal Symmetry

A property of the Mathieu Equation that will prove helpful is that it is time reversible.

To see this note that all of the coefficients in P (t) are even functions. Given T̄ = −T ,

a solution to the system





z1(T )

z2(T )



 when transformed to T̄ becomes





z1(T̄ )

−z2(T̄ )



.

Hence,




z1(T )

z2(T )



 =





z1(T̄ )

−z2(T̄ )



 (3.11)

To verify that this is the correct time reversal symmetry, lets examine this trans-

formed system.





−dz1

dT̄

dz2

dT̄



 =





0 1

−A − B cos(T ) 0









z1(T̄ )

−z2(T̄ )





When written as a single ODE, this transformation gives:

d2z1

dT̄ 2
+ (A + B cos(T̄ ))z1 = 0,

which is the same ODE as Equation (3.5), verifying the symmetry.

3.5 Introduction of Matrix E

Let Φ(T ) be a fundamental matrix of the Mathieu Equation, and φ1(t), and φ2(t) as

its columns. Note that by Equation (3.6):

dΦ

dt
(t) = P (t)Φ(t),

and
dΦ

dt
(t + τ) = P (t + τ)Φ(t + τ)
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since fundamental matrices have solutions as their columns. Since P is periodic

P (t) = P (t + τ),

by substitution we have
dΦ

dt
(t + τ) = P (t)Φ(t + τ).

Φ(t + τ) is also a fundamental matrix of the system as its columns are solutions

of Equation (3.6). Since the columns of Φ(t) are a basis for the solution space of

the Mathieu Equation, the solution columns of Φ(t + τ) can be written as linear

combinations of the columns of Φ(t). Let

Φ(t) = φij(t),

hence

φij(t + τ) =
n

∑

k=1

eikφkj(t),

where eik represents a matrix of constants, let E be this matrix. Therefore,

EΦ(T ) = Φ(T + τ), (3.12)

for all T. Note that this is also true for any solution vector z(T ),

Ez(T ) = z(T + τ). (3.13)

3.6 Finding the Eigenvectors of E

The characteristic numbers of the Mathieu Equation are the eigenvalues of E and

µ1 and 1/µ1 are the eigenvalues for E. Let





e1

e2



 be the eigenvector for µ1 and let
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



f1

f2



 be the eigenvector for 1/µ1. Thus,

E





e1

e2



 = µ1





e1

e2





and

E





f1

f2



 = (1/µ1)





f1

f2



 .

These eigenvectors must be linearly independent, and it follows that any solution

vector’s initial condition can be written as a linear combination of these eigenvectors.

Let z̄(T ) =





z1(T )

z2(T )



 be a solution with initial condition

z̄(0) = ao





e1

e2



 + bo





f1

f2



 .

Then, by taking T = 0 in Equation (3.13)

z̄(τ) =





z1(τ)

z2(τ)





= Ez̄(0)

= aoE





e1

e2



 + boE





f1

f2





= aoµ1





e1

e2



 + bo(1/µ1)





f1

f2





=





aoµ1e1 + bo(1/µ1)f1

aoµ1e2 + bo(1/µ1)f2





Also, note that Ez̄(−τ) = z̄(0), and hence
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z̄(−τ) =





z1(−τ)

z2(−τ)





= E−1z̄(0)

= aoE
−1





e1

e2



 + boE
−1





f1

f2





= ao(1/µ1)





e1

e2



 + boµ1





f1

f2





=





ao(1/µ1)e1 + boµ1f1

ao(1/µ1)e2 + boµ1f2



 .

By Equation (3.11), z1(τ) = z1(−τ) and z2(τ) = −z2(−τ).

Substituting for the z1, and z2’s, yields

aoµ1e1 + bo(1/µ1)f1 = ao(1/µ1)e1 + boµ1f1 (3.14)

and

aoµ1e2 + bo(1/µ1)f2 = −ao(1/µ1)e2 − boµ1f2. (3.15)

These equations yield that

ao/bo





e1

−e2



 =





f1

f2



 .

Therefore,

(ao/bo)E





e1

−e2



 = (ao/bo)(1/µ1)





e1

−e2



 ,

and

E





e1

−e2



 = (1/µ1)





e1

−e2



 .
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



e1

−e2



 is an eigenvector of 1/µ1. [8]

3.7 Method of Stability Analysis

Knowing the eigenvectors in terms of one another will help to find an equation for

µ1, which as seen in equations (7) and (8) will tell us the growth rate of the solution.

To that end, consider the initial condition for the solution z(T ), z(0) =





1

0



.

Note that this vector can be re-written such that,

z(0) =





1

0



 = (1/2e1)(





e1

e2



 +





e1

−e2



).

Applying Equation (3.12) yields,

z(τ) =





z1(τ)

z2(τ)



 = E





1

0





= (1/2e1)E(





e1

e2



 +





e1

−e2



)

= (1/2e1)(µ1





e1

e2



 + (1/µ1)





e1

−e2



)

=





(µ1 + 1/µ1)/2

0



 .

Hence,

z1(τ) = (µ1 + 1/µ1)/2 (3.16)
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and through the use of the quadratic equation,

µ1 = z1(τ) ± ((z1(τ))2 − 1). (3.17)

A numerical approximation can be applied to find z1(τ) given values for A and B,

and with the initial condition





1

0



. The numerically approximated value for z1(τ)

can be substituted into Equation (3.17) to find a value for µ1.

Now the value of |z1(τ)| determines the stability of the solution. The discussion of

this was adapted from Jordan’s text. [8] Note that for |z1(τ)| < 1, µ1, µ2 are complex,

while |z1(τ)| ≥ 1 µ1 and µ2 are real. The two characteristic numbers correspond to

the two different solutions of the differential equation. The form of these solutions is

given in Equation (3.7). The solutions have two terms, a periodic term and a growth

term. The characteristic number relates to the growth terms as shown in Equation

(3.8).

If the characteristic numbers are complex, they must be complex conjugates and

must have magnitude 1 since µ1µ2 = 1. In this regime, the solutions are

z1(T ) = c1e
βiT p1(T ) + c2e

−βiT p2(T )

= c1p1(T )(cos(βT ) + i sin(βT )) + c2p2(T )(cos(−βT ) + i sin(−βT )).

These solutions are oscillatory, but are not generally periodic as they contain terms

with periods 2π and 2π/β. These solutions are bounded.

If z1(τ) = 1, then µ1 = µ2 = 1, and the characteristic exponents are 0. Hence,

there is one solution of the form z1 = p1(T ), and thus there exists one 2π periodic

solution.

If z1(τ) = −1, then µ1 = µ2 = −1. In this case, the characteristic exponents must
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be i/2, as

−1 = cos(π) + i sin(π) = eiπ = eτi/2.

Therefore there exists a solution of the form

z1(T ) = eiT2p1(T ) = (cos(T/2) + i sin(T/2))p1(T )

for these characteristic numbers. Thus, there exists a 4π periodic solution in this case.

If |z1(τ)| > 1 then µ1, and µ2 are positive and real. The differential equation has

solutions of the form

z1(T ) = c1e
αT p1(T ) + c2e

−αT p2(T ),

where α > 0 and real. Hence, an unbounded solution exists in this case.

If z1(τ) < −1 then µ1, and µ2 are negative and real. The differential equation has

solutions of the form

z1(T ) = c1e
(α+i/2)T p1(T ) + c2e

(−α+i/2)T p2(T )

= c1e
αT eiT/2p1(T ) + c2e

−αT eiT/2p2(T )

= c1e
αT q1(T ) + c2e

−αT q2(T ),

where α > 0 and real, and q1(T ), and q2(T ) are 4π periodic functions. Hence, an

unbounded solution exists in this case.

The cases when |z1(τ)| = 1 form the boundary between bounded and unbounded

solution regimes. So if a 2π or 4π periodic solution exists at a particular point in the

AB plane, that point is on the boundary between bounded and unbounded solutions.

The discussion of boundedness above only addresses whether solutions for z(T )

are bounded. However, ζ(T ) governs the surface fluid motion, not z(T ). In order
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for surface waves to occur, an unbounded solution for ζ(T ) must exist. Since surface

waves are necessary for droplet ejection, an unstable solution for ζ(T ) is required to

be in a droplet ejecting regime.

Recall that z(T ) is related to ζ(T ) through Equation (3.3).

ze−2νk2T/ω = ζ.

ζ(T ) is z(T ) times an exponential decay factor. Thus, any point on the AB plane

for which no unbounded solutions exist for z(T ) will also have no unbounded solutions

for ζ(T ). Solutions for ζ(T ) can be found by substituting a solution for z(T ) given

by Equation (3.7) into Equation (3.3), yielding

ζ(T ) = pi(T )e(αi−2νk2/ω)T .

In order for a solution to ζ(T ) to be unbounded and yield an instability, αi (the real

part of the characteristic exponent) must be > 2νk2/ω. Let µ be the characteristic

number of greater complex magnitude. Thus, by Equation (3.8)

|µ| > e2νk2τ/ω (3.18)

must be true in order for a solution for ζ to yield instability.

3.8 Results of Stability Analysis

Equation (3.5) was solved numerically over a wide range of parameters A and B. At

each point on the A-B plane, the value of z1(τ) was calculated and the corresponding

value for |µ| was found by applying Equation (3.17).

A specific value for the minimum |µ| necessary to yield instability can be found

for a fluid driven at a given forcing frequency if sub-harmonic resonance is assumed,



23

that is if A = .25. For water:

σ = 72.8 dyne/cm

ρ = 1 g/cm3

ν = 1.002 ∗ 10−2 cm2/sec

At a driving frequency of ω = 1 MHz and sub-harmonic resonance, the wave number

of the instability, k can be calculated by substituting these values into the equation

for A. This yields k = 1513 cm−1. Plugging this value for k into Equation (3.18)

yields the minimum |µ| necessary to yield instability, which with these parameters is

|µ| > 1.33.
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Figure 3.1: Contour plot of |µ| on the A-B plane. The values of the contours shown are |µ| =
1.0001, 1.5, 3, 5, 10, with |µ| = 1.0001 being the sharpest of these contours. Points inside of any
of these contours have one unbounded solution for z at that value of A and B. While for ζ, one
unbounded solution will exist if |µ| satisfies Equation (3.18).

For water, at sub-harmonic resonance, driven at ω = 1 MHz, |µ| > 1.33 in order

for a solution to yield instability. Sub harmonic resonance yields the lowest value of

B that is able to support an unstable wave solution, as it dips lower than the other

tongues. Hence, the bottom of the |µ| = 1.33 sub harmonic resonance tongue will

yield the lowest value of B that is able to generate surface wave instability.
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Figure 3.2: Zoom in on sub harmonic of figure (3.1).

The condition on parameter B yields a condition on the forcing acceleration, a, as

B = −ak/ω2. We neglect the negative sign, as it only contributes a phase factor to

the final solution, and get

a > 4ωνk2

in order for surface wave excitation to occur.

3.9 Damping Inclusion

In sections 3.7 and 3.8, a method of determining the boundary curves between surface

wave producing and non wave producing regimes for a particular fluid at sub-harmonic

resonance was presented. In this section, the problem of finding stability curves is

approached in more general terms starting from Equation (3.4):

d2z

dT 2
+ (k3σ/ρω2 − 4ν2k4/ω2 − (ak/ω2) cos(T ))z = 0. (3.19)
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Figure 3.3: Plot of |µ| versus B at A = .25. The instability condition that |µ| > 1.33 for water
driven at 1 MHz translates into the condition that B > .0912 ≈ 4νk2/ω. Recall that 4νk2/ω is the
damping term from Equation (3.2), while B is the forcing amplitude. Hence, the forcing amplitude
must be greater than the damping in order for a solution for ζ to be unbounded.

To simplify this equation apply the following substitutions:

γ = 4νk2/ω

Aγ = k3σ/ρω2

Bγ = −(ak/ω2).

This produces a form of the differential equation that still includes the coefficient

from the damping term, which is separated from the other coefficients.

d2z

dT 2
+ (Aγ − γ2/4 + Bγ cos(T ))z = 0.

In terms of these coefficients, z relates to ζ, the variable governing surface wave

motion, as follows:

ze−Tγ/2 = ζ.

Hence, in order for an unbounded solution in ζ to exist, the characteristic number
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Figure 3.4: Plot of α versus B at A = .25. Note that |µ| = eα2π, and that α = B/2 provides a
convenient upper bound for α.

must satisfy:

|µ| > eγτ/2.

The value of the characteristic numbers were found by solving for z1(τ) over a

region of Aγ ,Bγ, and γ space, and then applying Equation (3.17).

3.10 Stability Curves in ω∗ vs A∗ Space

In this section, the stability curves are examined in a set of non-dimensional constants.

To create the differential equation that was used, begin with Equation (3.1):

d2ζ

dt2
+ 4νk2dζ

dt
+ (k3σ/ρ − ak cos(ωt))ζ = 0. (3.20)

Now, let K∗, A∗, and ω∗ be the non-dimensional versions of the parameters k, a,

and ω. In other words,

K∗ = k/k̄ (3.21)

A∗ = a/ā (3.22)

ω∗ = ω/ω̄, (3.23)
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Figure 3.5: The curves plotted above are the stability boundaries in the AγBγ plane, for varying γ.
6 values of γ stability boundaries are plotted, with value evenly distributed on [.2, 1].

where k̄ is the characteristic inverse length scale, ā is the characteristic acceleration

scale, and ω̄ is the characteristic inverse time scale. Characteristic scale means that

with the set of constants in this problem, the fluid viscosity ν and the fluid’s surface

tension to density ratio, σ/ρ, constants can be construct to have a particular dimen-

sion. The characteristic length scale would be the combination of these constants that

gives units of length, ν2/(σ/ρ). Hence,

k̄ = (σ/ρ)/ν2

ā = (σ/ρ)3/ν4

ω̄ = (σ/ρ)2/ν3.

Substituting the non-dimensional version of these variables into Equation (3.1) yields:

d2ζ

dt2
+ 4K∗2 (σ/ρ)2

ν3

dζ

dt
+ (K∗3 (σ/ρ)6

ν4
− A∗K∗ (σ/ρ)6

ν4
cos(ω∗ (σ/ρ)2

ν3
t))ζ = 0.

Scaling time by T = ((σ/ρ)2/ν3)t further simplifies this differential equation:

d2ζ

dT 2
+ 4K∗2 dζ

dT
+ (K∗3 − A∗K∗ cos(ω∗T ))ζ = 0.
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Figure 3.6: The minimum value of parameter Bγ that causes instability in the first sub harmonic
resonance tongue, the tongue that approaches Aγ = .25 as γ approaches 0, was found over a range
of values of γ. This is a plot of those values against the γ value at which they occur.

In terms of these variables, the standard substitution that is performed to remove

the damping term is

ze−2TK∗2

= ζ,

which simplifies the differential equation as shown below,

d2z

dT 2
+ (K∗3 − 4K∗4 − A∗K∗ cos(ω∗T ))z = 0. (3.24)

Using a numerical approximation, z1(τ) was found for this differential equation

over a range in the A∗ω∗ plane, yielding the characteristic numbers at those points. For

this equation the minimum characteristic number necessary in order for an unbounded

solution to exist is:

|µ| > e2K∗2τ .

For a several different K∗, the contour of this bound was plotted.

For K∗ À 1,

12.03K∗3 = A∗ (3.25)
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found over a range of γ. These values are plotted against the γ at which they occur in this figure.

For K∗ À 1,

1.860K∗2 = ω∗ (3.26)

Putting Equations (3.25-3.26) together yields a relationship for A∗ and ω∗ at large

K∗ À 1,

4.74ω∗ 3
2 = A∗ (3.27)

By applying Equations (3.22) and (3.23) the dimensions on A∗, and ω∗ can be

recovered. Using these substitution yields:

4.74ν
1
2 ω

3
2 = A (3.28)

The acceleration required for particle ejection when 1 > ω∗ > 10−5 has been shown

to be

1.306ν
1
2 ω

3
2 = A

through experiment. [7] This scaling applies to a different range of ω∗ than the scaling

given in Equation (3.26) which applies when ω∗ À 1. Note the two equations agree

in terms of exponents on ω and ν, but disagree on the constant in an unintuitive way.



30

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0.5

1

1.5

2

2.5

3

3.5

4

Parameter Omega
P

ar
am

et
er

 A

Plot of required forcing a necessary for instability in x" + (k3 − 4k4 + akcos ot) x = 0

Figure 3.8: For 6 evenly spaced values of K∗ ranging from .1 to .6, the boundary between regions
where an unbounded solution for ζ exists and where all solutions for ζ are bounded are plotted on
the A∗ω∗ plane. The lowest curve corresponds to K∗ = .1, while the highest curve corresponds to
K∗ = .6, and the other K∗ values fill in the range between them.

Since wave formation is required for droplet formation, the acceleration required for

droplet formation must be greater than the acceleration required for droplet ejection.

The constants shown suggest otherwise, although they apply in different ranges of ω∗.
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Figure 3.9: The minimum A∗ required in order for an unbounded solution for ζ to exist is plotted
at varying values of K∗.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

5

10

15

20

25

30

35

40

45

50

Parameter Omega*

P
ar

am
et

er
 K

*
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is plotted against varying values of K∗.



Chapter 4

Fourier Methods for Weakly Viscous Analysis

As it was shown in the characterization of solutions to the Mathieu Equation in

Floquet form, 2π and 4π periodic solutions form the boundary between growing and

bounded solutions. Finding these periodic solutions solves for the growing regions in

parameter space. Hence, if a solution to Equation (3.1) can be written as a Fourier

series, then this solution is periodic and part of the boundary between growing and

bounded solutions. Thus, Fourier methods can be applied to solve the problem of

Mathieu Equation presented in Chapter 3.

4.1 Fourier Methods

Recall that the differential equation,

d2ζ

dt2
+ 4νk2dζ

dt
+ (k3σ/ρ − ak cos(ωt))ζ = 0,

can be used to model the motion of the surface of the fluid with viscosity ν, surface

tension σ, and density ρ, where k is the the wave number of the surface oscillations,

and the bottom of the container holding the fluid is oscillating with maximum accel-

eration a and frequency ω.

In section 3.2, this equation was non-dimensionalized, and then simplified by using

a substitution. In this case, the constants in the equation will keep their dimensions

but the substitution will still be applied. Applying the substitution,

ze−2νk2T = ζ,
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yields the following differential equation:

d2z

dt2
+ (k3σ/ρ − 4ν2k4 − ak cos(ωt))z = 0.

To further reduce the number of constants that appear in the equation, let

Ao = k3σ/ρ − 4ν2k4

Bo = −ak.

This gives a simplified version of the differential equation,

d2z

dt2
+ (Ao − Bo cos(ωt))z = 0. (4.1)

Note that

A = Ao/ω
2

B = Bo/ω
2,

where A and B are the same parameters that appear in Equation (5).

As discussed in section 3.7, on the boundary between bounded and unbounded

solutions to z(T ) either a 2π or 4π periodic solution exists. Recall that T = ωt. With

unscaled time t, these solutions are either 2π/ω or 4π/ω periodic. If for a particular

set of values for Ao, Bo, and ω, a 2π/ω or 4π/ω periodic solution exists to Equation

(4.1), a 2π or 4π periodic solution also exists to Equation (3.5) for A = Ao/ω
2 and

B = Bo/ω
2. Let x(t) be a 2π/ω periodic solution to Equation (4.1). This solution

can be written as a Fourier series as follows:

x(t) =
∞

∑

n=−∞

cne
inωt, (4.2)
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and taking two derivatives of x(t) yields:

d2x

dt2
(t) =

∞
∑

n=−∞

−n2ω2cne
inωt.

Plugging these results into Equation (4.1) gives:

0 =
∞

∑

n=−∞

−n2ω2cne
inωt + (Ao + Bo cos(ωt))

∞
∑

n=−∞

cne
inωt

=
∞

∑

n=−∞

−n2ω2cne
inωt +

∞
∑

n=−∞

(Ao +
Bo

2
(eiωt + e−iωt))cne

inωt

=
∞

∑

n=−∞

−n2ω2cne
inωt +

∞
∑

n=−∞

Aocne
inωt +

Bocn

2
ei(n+1)ωt +

Bocn

2
ei(n−1)ωt

=
∞

∑

n=−∞

−n2ω2cne
inωt + Aocne

inωt +
∞

∑

n=−∞

Bocn

2
ei(n+1)ωt +

∞
∑

n=−∞

Bocn

2
ei(n−1)ωt.

Re-indexing the last two sums yields:

0 =
∞

∑

n=−∞

−n2ω2cne
inωt + Aocne

inωt +
∞

∑

n=−∞

Bocn−1

2
einωt +

∞
∑

n=−∞

Bocn+1

2
einωt

=
∞

∑

n=−∞

−n2ω2cne
inωt + Aocne

inωt +
Bocn−1

2
einωt +

Bocn+1

2
einωt

=
∞

∑

n=−∞

(−n2ω2cn + Aocn +
Bocn−1

2
+

Bocn+1

2
)einωt.

In order for this equation to hold, the coefficient on each term must equal zero.

Therefore,

−n2ω2cn + Aocn +
Bocn−1

2
+

Bocn+1

2
= 0,

for all n ∈ Z. This can be written in matrix form as follows:
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

































. . .

Ao − 4ω2 Bo

2
0 0 0

Bo

2
Ao − ω2 Bo

2
0 0

0 Bo

2
Ao

Bo

2
0

0 0 Bo

2
Ao − ω2 Bo

2

0 0 0 Bo

2
Ao − 4ω2

. . .





































































...

c−2

c−1

c0

c1

c2

...



































= AC = 0.

This matrix equation can be solved by finding which values of Ao, Bo, and ω make A

singular, and hence make det(A) = 0. The equation can also be rearranged to a two

matrix eigenvalue problem of the form AC = ω2BC as follows:



































. . .

Ao
Bo

2
0 0 0

Bo

2
Ao

Bo

2
0 0

0 Bo

2
Ao

Bo

2
0

0 0 Bo

2
Ao

Bo

2

0 0 0 Bo

2
Ao

. . .





































































...

c−2

c−1

c0

c1

c2

...



































= ω2



































. . .

−4 0 0 0 0

0 −1 0 0 0

0 0 0 0 0

0 0 0 −1 0

0 0 0 0 −4
. . .





































































...

c−2

c−1

c0

c1

c2

...



































.

(4.3)

Hence, a 2π/ω periodic solution exists for any Ao, Bo, and ω that satisfy this

equation. This two matrix eigenvalue problem was solved over a region in the AoB

plane. For each point in the plane that had a positive eigenvalue, ω2, the point

(Ao/ω
2, Bo/ω

2) was plotted on the AB plane. At these points, 2π periodic solutions

to Equation(3.5) exist.

The x(t) given in Equation(4.2) is 2π/ω periodic, but solutions on the boundary

of unstable solution existence can also be 4π/ω periodic. Let x(t) be 4π/ω periodic.
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Figure 4.1: Plot of AB points that yield 2π periodic solutions to Equation (3.5). Note that these
were obtained through solving the eigenvalue problem given in Equation (4.3) over a region on the
AoB plane, and finding the corresponding point on the AB plane. These tongues correspond to
harmonic resonance.

Hence, x(t) can as a Fourier series of the form

x(t) =
∞

∑

n=−∞,odd

cne
inωt/2.

Note that for even n, the 2π/ω periodic series is recovered, and that it is only for odd

n that einωt/2 will be 4π/ω periodic.

Writing x(t) in this form, yields

d2x

dt2
(t) =

∞
∑

n=−∞,odd

(−n2ω2cn/4)e
inωt/2.

as the second derivative of x(t).

Through manipulations similar to those given for the 2π/ω periodic Fourier series,

the following two matrix eigenvalue problem is obtained:
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Figure 4.2: Plot of AB points that yield 4π periodic solutions to Equation (3.5). Note that these
were obtained through solving the eigenvalue problem given in Equation (4.4) over a region on the
AoB plane, and finding the corresponding point on the AB plane. These tongues correspond to
harmonic resonance.





























. . .

Ao
Bo

2
0 0

Bo

2
Ao

Bo

2
0

0 Bo

2
Ao

Bo

2

0 0 Bo

2
Ao

. . .

























































...

c−3

c−1

c1

c3

...





























=
ω2

4





























. . .

−9 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −9
. . .

























































...

c−3

c−1

c1

c3

...





























.

(4.4)

Translating the Ao, Bo, and ω solutions to this eigenvalue problem into the AB plane

gives 4π periodic solutions to Equation (3.5).

4.2 Fourier Method for Finding Stability Curves in the A∗ω∗ Plane

In this section, the K∗ À 1 scalings from section 3.10 are reproduced using Fourier

methods. The discussion in this section starts from the differential equation given by
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Equation (3.24):

d2ζ

dT 2
+ 4K∗2 dζ

dT
+ (K∗3 − A∗K∗ cos(ω∗T ))ζ = 0.

In order to establish that a periodic solution will exist only on the boundary

between regions where an unbounded solution for ζ exists, and where all solutions are

bounded, the first step in to put the differential equation into matrix form so that

Floquet Theory results can be applied. The differential equation above when written

as a system of first order differential equations is:




dζ1
dT

dζ2
dT



 =





0 1

−K∗3 + A∗K∗ cos(ω∗T ) −4K∗2









ζ1

ζ2



 .

Note that the trace of the coefficient matrix is non zero here,

tr(





0 1

−K∗3 + A∗K∗ cos(ω∗T ) −4K∗2



) = −4K∗2.

From Floquet Theory, we can conclude that the product of the characteristic numbers

of the system,

µ1µ2 = e
∫

2π/ω∗0−4K∗2dS = e−8πK∗2/ω∗

< 1,

since ω∗ > 0. Hence if one of the characteristic numbers, say µ1, = 1 then µ2 =

e−8πK∗2/ω∗

< 1. Thus, if one of the characteristic numbers is 1, then that point in

parameter space is on the boundary of surface excitation. Similarly, if one of the

characteristic numbers is -1, that point in parameter space must be on the boundary.

This implies that if a 2π/ω∗ or 4π/ω∗ periodic solution exists, the values of A∗, ω∗,

and K∗ are on the surface wave excitation boundary.

The next task is to actually find such periodic solutions. Let ζ(t) be a 2π/ω∗

periodic solution to the differential equation. Hence it can be written in as a Fourier

series,
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ζ(t) =
∞

∑

n=−∞

(cn + ibn)einω∗t. (4.5)

Note that this series must have complex coefficients. Otherwise, differentiating once

would not be a closed operation for the series. Also, note that in order for this series

to give a real function, the following must hold true

cn = c−n,

and

bn = −b−n.

In order to see this, lets examine Equation (4.5) a bit more extensively. Breaking

down einω∗t into sin and cos functions gives,

ζ(t) =
∞

∑

n=−∞

(cn + ibn)einω∗t

=
∞

∑

n=−∞

(cn + ibn)(cos(nω∗t) + i sin(nω∗t))

= c0 +

ib0

∑

∞
n=1(cn + ibn)(cos(nω∗t) + i sin(nω∗t)) + (c−n + b−n)(cos(−nω∗t) + i sin(−nω∗t))

= c0 + ib0

∞
∑

n=1

(cn + ibn)(cos(nω∗t) + i sin(nω∗t)) + (c−n + b−n)(cos(nω∗t) − i sin(nω∗t))

= c0 + ib0

∞
∑

n=1

(cn + c−n + i(bn + b−n))(cos(nω∗t) + (−bn + b−n + i(cn − c−n)) sin(nω∗t)).

Thus, in order for ζ to be a real function, cn = c−n, bn = −b−n, and bo = 0.

Differentiating to find the other terms in the differential equation, yields:

dζ

dt
(t) =

∞
∑

n=−∞

nω∗(−bn + icn)einω∗t,

and
d2ζ

dt2
(t) =

∞
∑

n=−∞

−n2ω∗2(cn + ibn)einω∗t.
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Plugging these results into Equation (3.24) gives:

0 =
∞

∑

n=−∞

−n2ω∗2(cn + ibn)einω∗t + (4K∗2)
∞

∑

n=−∞

nω∗(−bn + icn)einω∗t

+ (K∗3 + A∗K∗ cos(ω∗t))
∞

∑

n=−∞

(cn + ibn)einω∗t

=
∞

∑

n=−∞

[−n2ω∗2cn − 4K∗2nω∗bn + K∗3cn + i(−n2ω∗2bn + 4K∗2nω∗cn + K∗3bn)]einω∗t

+
∞

∑

n=−∞

(1/2)A∗K∗(eiω∗t + e−iω∗t)(cn + ibn)einω∗t

=
∞

∑

n=−∞

[−n2ω∗2cn − 4K∗2nω∗bn + K∗3cn + i(−n2ω∗2bn + 4K∗2nω∗cn + K∗3bn)]einω∗t

+
∞

∑

n=−∞

A∗K∗

2
(cn + ibn)ei(n+1)ω∗t +

∞
∑

n=−∞

A∗K∗

2
(cn + ibn)ei(n−1)ω∗t

Re-indexing the last two sums yields:

0 =
∞

∑

n=−∞

[−n2ω∗2cn − 4K∗2nω∗bn + K∗3cn + i(−n2ω∗2bn + 4K∗2nω∗cn + K∗3bn)]einω∗t

+
∞

∑

n=−∞

A∗K∗

2
(cn−1 + ibn−1)e

inω∗t +
∞

∑

n=−∞

A∗K∗

2
(cn+1 + ibn+1)e

inω∗t

=
∞

∑

n=−∞

[(−n2ω∗2cn − 4K∗2nω∗bn + K∗3cn +
A∗K∗

2
cn−1 +

A∗K∗

2
cn+1)

+ i(−n2ω∗2bn + 4K∗2nω∗cn + K∗3bn +
A∗K∗

2
bn−1 +

A∗K∗

2
bn+1)]e

inω∗t

In order for this equation to hold, the coefficient on both the real and imaginary parts

of each term in the series must equal zero. Therefore,

−n2ω∗2cn − 4K∗2nω∗bn + K∗3cn +
A∗K∗

2
cn−1 +

A∗K∗

2
cn+1 = 0,

and

−n2ω∗2bn + 4K∗2nω∗cn + K∗3bn +
A∗K∗

2
bn−1 +

A∗K∗

2
bn+1 = 0.
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for all n ∈ Z. Because of the restriction on c−n, and b−n that forces ζ to be a real

function implies, it is only necessary to examine non negative n values. Also note

that,

0 = (K∗3 − 02ω∗2)c0 − 4K∗20ω∗b0 +
A∗K∗

2
c−1 +

A∗K∗

2
c1

= K∗3c0 + A∗K∗c1,

and similarly

0 = (K∗3 − 02ω∗2)b0 + 4K∗20ω∗c0 +
A∗K∗

2
b−1 +

A∗K∗

2
b1

= K∗3b0.

The entire system of equations can be written in matrix form as follows:



































K∗3 0 A∗K∗ 0 0 0

0 K∗3 0 0 0 0

A∗K∗

2
0 K∗3 − ω∗2 −4K∗2ω∗ A∗K∗

2
0

0 A∗K∗

2
4K∗2ω∗ K∗3 − ω∗2 0 A∗K∗

2

0 0 A∗K∗

2
0 K∗3 − 4ω∗2 −8K∗2ω∗

0 0 0 A∗K∗

2
8K∗2ω∗ K∗3 − 4ω∗2

. . .





































































c0

b0

c1

b1

c2

b2

...



































= AC = 0.

(4.6)

This matrix equation can be solved by finding which values of K∗, A∗, and ω∗ make

A singular, and hence make det(A) = 0. At these points, 2π/ω∗ periodic solutions to

Equation(3.24) exist.

Thus far, only 2π/ω∗ periodic functions have been found, while the existence of a

4π/ω∗ function also implies boundary between excitation regimes. Let ζ be a 4π/ω∗

function, and in a similar fashion to finding the harmonic curve for Equation (3.24),

ζ can be written as the following 4π/ω∗ periodic Fourier series:
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Figure 4.3: This is a plot of the ordered pairs (ω∗, A∗) that yield a non-trivial solution for Equation
(4.6) with K∗ = .15.

ζ(t) =
∞

∑

n=−∞,odd

(cn + ibn)einω∗t/2.

Differentiating this series yields:

dζ

dt
=

∞
∑

n=−∞,odd

nω∗

2
(−bn + icn)einω∗t/2,

and
d2ζ

dt2
=

∞
∑

n=−∞,odd

−n2ω∗2

4
(cn + ibn)einω∗t/2.

Theses series’ when plugged into Equation (3.24), and after applying similar ma-

nipulations as those used in the harmonic case, yield the following matrix equation:























K∗3 − ω∗2

4
+ A∗K∗

2
−2K∗2ω∗ A∗K∗

2
0

2K∗2ω∗ K∗3 − ω∗2

4
− A∗K∗

2
0 A∗K∗

2

A∗K∗

2
0 K∗3 − 9ω∗2

4
−6K∗2ω∗

0 A∗K∗

2
6K∗2ω∗ K∗3 − 9ω∗2

4

. . .













































c1

b1

c3

b3

...























= AC = 0.

(4.7)
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Figure 4.4: Each (ω∗, A∗) ordered pair plotted above solves the matrix Equation (4.7) with K∗ = .15,
making the curves shown the boundary for sub harmonic resonance between surface wave excitation
regimes.

For K∗ À 1 the relationship between A∗ and K∗ is

12.03K∗3 = A∗ (4.8)

For K∗ À 1,

1.860K∗2 = ω∗ (4.9)

Putting Equations (4.8-4.9) together yields a relationship for A∗ and ω∗ at large

K∗ À 1,

4.74ω∗ 3
2 = A∗

Note, that this is in agreement with Equation(3.27) and the scaling found without

using Fourier methods.
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Figure 4.5: For each K∗ the minimum value of A∗ necessary to cause instability for either sub-
harmonic or harmonic tongues was found. For example, for K∗ = .15 this corresponds to point with
the lowest A∗ plotted in Figs. (4.3) and (4.4).
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Figure 4.6: The value of ω∗ at which the minimum A∗ required for surface wave excitation to occur
is plotted against varying values of K∗.



Chapter 5

Derivation of Hydrodynamic System

In order to deal with a highly viscous fluid, it is necessary to consider the full

hydrodynamic system, which consists of the Navier Stokes Equation, the condition of

fluid incompressibility, and appropriate boundary conditions including the kinematic

condition. This system of partial differential equations is derived in this chapter

by considering conservation laws, and Newton’s second law on the surface of the

fluid. Additionally, this chapter deals with the linearization of this system about the

hydrostatic case. This linearization is necessary to make the system tractable.

5.1 Governing Equations in Body of Fluid

In this section, the partial differential equation governing the fluid’s motion is derived

from first principles. The derivation of the incompressibility condition and the stress

tensor are adapted from versions that appear in Viscous Flows by Ockendon. [14]

Consider a fluid with free fluid surface h(x, y, t), which when the fluid is at rest

= 0, where the fluid rests in the region z < 0. Let ~u(x, y, z, t) be the vector velocity,

and P (x, y, z, t) be the pressure per area at all points within the fluid. Let ρ(x, y, z, t)

be the fluid density.

Conservation of Mass:

Consider an arbitrary piece of fluid volume, V . For a constant density, incom-
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pressible, fluid the total mass contained in that volume would simply be M = ρV .

Similarly in the case of variable density,
∫ ∫ ∫

V

ρdV = M.

Hence, the change in the mass in that volume over time can be written:

dM

dt
=

d

dt

∫ ∫ ∫

V

ρdV =

∫ ∫ ∫

V

dρ

dt
dV. (5.1)

The time rate of change of the mass in volume V can also be written from the

perspective of density flux in and out of the volume. Since mass is conserved, if the

mass in the volume decreases, this means that mass has moved out of the volume and

that there was a net outward mass flux from the volume. Hence, the outward flux of

mass = −dM
dt

.

To get an idea of the form that the mass flux takes, consider an infinitesimal piece

of surface area for our volume, dS. For this surface area, both ~u and ρ will be constant.

Let n̂ be the unit normal vector for this infinitesimal piece of surface area, and note

that ~u · n̂ is the component of velocity normal to the surface. Hence, dS(~u · n̂) is the

volume flux out of dS, the rate of fluid volume leaving dS. Thus, the rate of mass leav-

ing dS is ρdS(~u · n̂). This a small piece of mass flux, d Mass Flux. Putting it together,

d(Mass Flux) = ρ(ũ · n̂)dS.

Further, the total mass flux is the sum of these infinitesimal pieces of flux,

Mass Flux =

∫ ∫

S

ρũ · n̂dS =

∫ ∫ ∫

V

∇ · (ρũ)dV.

Note observe that the application of the divergence theorem in converting from a

surface integral to a volume integral. Hence,
∫ ∫ ∫

V

dρ

dt
dV = −

∫ ∫ ∫

V

∇ · (ρ~u)dV,
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and since these volumes are arbitrary, the integrands must be equivalent,

dρ

dt
+ ∇ · (ρ~u) = 0. (5.2)

In the case of an incompressible fluid, the density of the fluid is constant. This

makes sense since no matter how strongly pressure squeezes an incompressible, the

fluid would not change density. When assuming an incompressible fluid, Equation

(5.2) reduces to

∇ · ~u = 0, (5.3)

since dρ
dt

= 0.

Conservation of Linear Momentum: Let ~W be the total momentum in an

arbitrary volume, V . Consider an infinitesimal volume of fluid, dV , that is small

enough that ~u and ρ are constant over dV . The infinitesimal linear momentum in

that piece of fluid is

d ~W = ρdV ~u,

by applying the basic mechanics equation, momentum = mass*velocity. Summing

over these infinitesimal pieces of fluid yields

~W =

∫ ∫ ∫

V

ρ~udV

Further, the time rate of change of the momentum can be written:

d ~W

dt
=

d

dT

∫ ∫ ∫

V

ρ~udV =

∫ ∫ ∫

V

d(ρ~u)

dt
dV.

A natural question to ask is, what would cause the momentum in a piece of fluid

volume V to change? Momentum can change by the application of forces to the

fluid volume. Additionally, if particles with high momentum leave and are replaced

by particles of smaller momentum, there is an outward flux of momentum from the

volume. The momentum flux is another cause of momentum change in the volume.
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Lets take a look at forces that could be acting on the fluid volume. These break down

into two categories, body forces and surface forces. The distinction here is that body

forces act inside of the volume under consideration, while surface forces act only on

the surface of the volume. Let ~F be the force per unit mass of body forces applied to

an infinitesimal piece of fluid. Hence,

Net Body Forces =

∫ ∫ ∫

V

ρF̃dV.

As for forces applied on the surface of the fluid, there are two such forces to con-

sider, the pressure exerted on the volume, and the viscosity exerted on the volume.

Lets take a look at the pressure exerted on the fluid volume. First note that the

pressure on the surface of the volume is the only pressure that will effect the volume.

In other words, pressure at points inside of the volume do not cause any change in the

net momentum of the volume. To see this imagine splitting the volume into smaller

volumes that fill the larger volume completely, so that the boundaries of the small

volumes are in complete contact leaving no empty space. The pressure exerted on a

face of one of these internal pieces of volume will be balanced by the pressure on the

face that it is in contact with. Hence, the two forces counteract leaving no net force,

and no net change in momentum. Hence the net force exerted by the pressure on the

volume is due only to pressure on the surface of the volume. Thus the net pressure

can be written as follows:

Net Pressure Force =

∫ ∫

S

Pn̂dS = −
∫ ∫ ∫

V

∇PdV,

where the divergence theorem was used the last step, and the negative sign shows

that pressure exerts an inward force.

Now consider the force exerted by viscosity on an infinitesimal piece of fluid vol-

ume, dV . Let this piece of volume have horizontal velocity ~v, and let z be the vertical

position coordinate. The fluid just above and just below the infinitesimal piece act on
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dV . Since the fluid is assumed to be Newtonian, the magnitude of the force exerted

by the piece of fluid just above dV varies linearly with the magnitude of the vector

difference of the velocity of the piece of dV and the velocity of dV . The direction of

the force is in the same direction as this same difference vector. Hence, if the fluid

is moving at a uniform velocity, no viscous forces are experienced. Additionally, if

∂2~v
dz2 = 0 at dV then the force exerted by the piece of fluid above dV is canceled by the

force exerted by the piece just below dV , leaving no net force. In fact, the magnitude

of the force in the horizontal direction caused by the vertically translated into fluid

pieces is proportional to this second derivative. Similarly, the magnitude of the force

in the horizontal direction caused by the horizontally translated fluid is proportional

to ∂2~v
dx2 . More generally, the net force of viscosity on an infinitesimal piece of volume

dV is proportional to ( ∂2~v
dx2 + ∂2~v

dz2 )x̂ + (∂2 ~w
dx2 + ∂2 ~w

dz2 )ẑ, where ~w is the vertical component

of velocity, and the ẑ term is the analog of the x̂ term when vertical velocities are

considered instead of horizontal. Let ν be the proportionality constant, known as the

kinematic viscosity of the fluid, and note that for a two dimensional fluid:

Force of Viscosity on dV = ν

[

(
∂2~v

dx2
+

∂2~v

dz2
)x̂ + (

∂2 ~w

dx2
+

∂2 ~w

dz2
)ẑ

]

= ν∇2~u.

Hence, the net force of viscosity over a piece of volume, V is:

Net Viscous Force =

∫ ∫ ∫

V

ρ∇2ũdV.

Lets now consider momentum flux. Considering an infinitesimal piece of surface

area, dS, the momentum flux is analogous to the mass flux.

d ~Momentum Flux = (ρ~u)(~u · n̂)dS

Similarly, the total momentum flux is the sum of the flux over these infinitesimal

pieces of surface area,
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~Momentum Flux =

∫ ∫

S

(ρ~u)(~u · n̂)dS =

∫ ∫ ∫

V

∇ · ((ρ~u)~u)dV

Note that another way to write the integrand of that final volume integral, which

clarifies the action of the ∇ operator, is

∇ · ((ρ~u)~u) = ∇ · (ρux~u)x̂ + ∇ · (ρuy~u)ŷ + ∇ · (ρuz~u)ẑ

In index notation, this is equivalent to ∇ · (ρui~u).

Now that the we have described the various ways that the linear momentum in our

volume can change, it is time to put these ideas together. First recall the mechanics

equation dMomentum
dt

= Net Force, where in the case of fluid in a particular volume,

the net force is made up of body and surface forces. Secondly, notice that a positive

outward flux of momentum will reduce the the momentum. This suggests that:

d ~W

dt
= Net Body Forces + Net Surface Forces − Momentum Flux.

Substituting the previously derived expressions,

∫ ∫ ∫

V

d(ρ~u)

dt
dV =

∫ ∫ ∫

V

ρ~FdV −
∫ ∫ ∫

V

∇PdV +

∫ ∫ ∫

V

ρν∇2~udV

−
∫ ∫ ∫

V

∇ · ((ρ~u)~u)dV.

Note that all of these integrals are over the same arbitrary volume, V . Hence, the

integrands are equivalent. Thus,

d(ρ~u)

dt
= ρ~F −∇P + ρν∇2~u −∇ · ((ρ~u)~u). (5.4)

Lets consider Equation (5.4) under the assumption of incompressiblity. Hence ρ

is a constant, and ∇ · ~u = 0 by Equation (5.2). Under this assumption, the term for

momentum flux can be significantly simplified.
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∇ · ((ρui)~u) = ρ∇(ui~u)

= ρ
d

dxj

(uiuj)

= ρ(
dui

dxj

uj + ui
duj

dxj

)

= ρ(~u · (∇ui) + ui(∇ · ~u))

= ρ((~u · ∇)ui) + ui(∇ · ~u))

= ρ((~u · ∇)~u) + ~u(∇ · ~u))

= ρ((~u · ∇)~u)

where in the last line, Equation (5.2) has been applied. This simplifies Equation (5.4)

to:

d~u

dt
+ (~u · ∇)~u) = ~F − (1/ρ)∇P + ν∇2~u. (5.5)

Equations (5.2) and (5.5) are the governing equations for fluid motion in the body

of the fluid.

5.2 Governing Equations for Surface of Fluid

The first observation to make about the fluid surface is that it moves with the body

of the fluid. Point being, the rate of change of the position of the surface, h(x, y, t) is

equal to velocity of the z coordinate at the surface, uz. Hence,

uz =
dh(x, t)

dt
=

∂h

∂t
+

dx

dt

∂h

∂x
=

∂h

∂t
+ ux

∂h

∂x
(5.6)

This equation is known as the kinematic condition.
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Consider a two dimensional infinitesimal fluid box. Let σij be the force per unit

area exerted in the î direction acting on the side of the box with outward normal

vector ĵ. σij is known as the stress tensor. The two types of force that play a role in

the tensor are pressure and viscous forces. For pressure, a force proportional to the

fluid’s pressure at that point will push inward on all sides of the box. Hence, −pδij is

the pressure’s contribution to the stress tensor.

As discussed previously, the force of viscosity in the direction of î on the side with

normal ĵ is proportional to ∂~ui

∂xj
, as the fluid is assumed to be Newtonian. Hence, the

viscosity contributes ν ∂~ui

∂xj
to σij .

Now consider the angular momentum of the box, by first giving the box side

lengths δ1 and δ2. The net angular momentum of the center of the box is:

Net Angular Momentum = 2(σ12δ2)δ1/2 − 2(σ12δ1)δ2/2.

If the rectangle is shrunk to zero, the angular momentum of the point must be

zero in order to keep the angular momentum in the fluid finite. Thus, σ12 = σ21,

implying that σ12 must have a ∂u2

∂x1
in the contribution of viscosity to the stress tensor,

and a similar statement can be made regarding σ21. Thus,

σij = −pδij + ν(
∂ui

∂xj

+
∂uj

∂xi

). (5.7)

Note that the viscosity’s contribution to the pressure has been neglected as it is a

smaller order effect than the pressure and tangential viscosity.

Both tangential and normal forces balance on the surface of the fluid. In addition

to the forces that act in the body of the fluid, surface tension also plays a role on

the surface for the fluid. Let n̂ be the normal vector at the fluid surface and t̂ be the

surface tangent vector. Surface tension acts normal to the surface of the fluid and

attempts to reduce the surface area of the fluid. Point being, that the surface tension

tries to reduce the absolute value of the curvature. Hence when curvature is positive,
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the surface is concave up, the force exerted by surface tension acts parallel to n̂, while

if the curvature is negative, the force exerted by surface tension acts anti parallel to

n̂. So the force of surface tension can be written:

Force of Surface Tension = Tκn̂

where κ is the curvature of the surface, and T = (σ/ρ) is a constant. Since the force

exerted in the n̂ direction on the n̂ face of a piece of fluid can be written as n̂i ·σij · n̂j ,

the force balance equation for the normal direction on the fluid surface can be written

as

n̂i · σij · n̂j + Tκ = 0. (5.8)

As for the tangential force balance, there are no additional forces present on the fluid

surface that are not present in the body of the fluid. Therefore,

t̂iσijn̂j = 0 (5.9)

These force balance equations when joined with,

d~u

dt
+ (~u · ∇)~u) = ~F − (1/ρ)∇P + ν∇2~u, (5.10)

uz =
∂h

∂t
+ ux

∂h

∂x
+ uy

∂h

∂y
, (5.11)

and

∇ · ~u = 0, (5.12)

fully describe the motion of the fluid. This set of equations is the full hydrodynamic

system.
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5.3 Hydrostatics and Linearizing the System

In the hydrostatic situation, ~u(x, y, z, t) = 0 and h(x, y, t) = 0. In this situation, there

is only one relevant body force, gravity, and thus ~F = −gẑ. Applying Equation (5.5)

with these conditions yields:

~F = (1/ρ)∇P̄

and thus

∇P̄ = −ρgẑ,

where P̄ is the order zero component of the pressure. This gives us three equations

on the partial derivatives of P̄ , namely:

∂P̄

∂x
= 0

∂P̄

∂y
= 0

∂P̄

∂z
= −ρg,

which imply that for the hydrostatic case,

P = Po − ρgz (5.13)

where Po is the pressure at z = 0, the atmospheric pressure.

As a means of simplifying the full hydrodynamic system, assume that the system

is near the hydrostatic situation. Making this assumption allows the system to lin-

earized about the hydrostatic case. In other words, deviations from the hydrostatic

case are treated as order ε effects. Hence, the relevant variables in the problem can

be written as
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~u(x, z, t) = 0 + εû(x, z, t) + . . . (5.14)

h(x, t) = 0 + εĥ(x, t) + . . . (5.15)

P (x, z, t) = Po − ρgz + εP̂ (x, z, t) + . . . (5.16)

n̂i ≈ z (5.17)

t̂i ≈ x (5.18)

κ ≈ ∇2ĥ, (5.19)

for the 2 dimensional problem. The fluid velocity at the surface can be written as:

~u(x, h, t) = εû(x, o, t) + · · · = ε(v̂(x, 0, t), 0, ŵ(x, 0, t)) + . . . , (5.20)

where in the last step, the velocity field has been broken down into components. The

linearized stress tensor is,

σij = ε(−pδij + ν(
∂ui

∂xj

+
∂uj

∂xi

)). (5.21)

Plugging Equations (5.14) - (5.21) into the expressions for the full hydrodynamic

system and collecting terms of order ε yields the following linearized set of equations:

dû

dt
= −(1/ρ)∇P̂ + ν∇2û (5.22)

∇ · û = 0 (5.23)

dĥ

dt
= ŵ (5.24)

−P̃ /ρ + 2ν
∂ŵ

∂z
= T∇2ĥ (5.25)

∂v̂

∂z
+

∂ŵ

∂x
= 0 (5.26)

It is important to note the difference between P̂ and P̃ . P̂ is the order ε component

of the pressure in the body of the fluid, while P̃ is the order ε component of the pressure
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at the surface of the fluid. This difference is necessary, as the first expressions in the

hydrodynamic system cited above hold in the body of the fluid, while the last three are

surface conditions. This subtle difference in the pressures will not effect the unforced

analysis presented in Chapter 6 since in the unforced case the pressure at the surface

can be written:

P (x, 0 + zε, t) ≡ Order zero terms + εP̃

= P̄ (x, 0 + zε, t) + εP̂ (x, 0 + zε, t)

= Po − ρg0 − ρgzε + εP̂ (x, 0 + zε, t)

≈ Po + εP̂ (x, z, t)

where gravity has been neglected and hence,

P̃ = P̂ .

In the case where forcing is included however, this difference is important.



Chapter 6

Unforced Viscous Analysis

Before attacking the full forced problem, it is helpful to first consider the unforced

case. This chapter focuses on solving the linearized partial differential equation sys-

tem given in Chapter 5 for unforced solutions. These solutions are analyzed and

interpreted in section 2 of this chapter.

6.1 Solving the Linearized System

Note that no x boundaries have been used in this problem. In other words, the fluid

extends to infinite x in both directions, and hence is symmetric under translations

of x. Hence, the x dependence of all of the physical functions can be written as eikx

where k is real. Also, note that we are attempting to identify oscillatory solutions,

and thus the time dependence of the physical parameters can be pulled out of each

expression in the form of eλt where λ is complex.

Consider the parameter vector,

















v̂(x, z, t)

ŵ(x, z, t)

P̂ (x, z, t)

ĥ(x, t)

















=

















v̂(z)

ŵ(z)

P̂ (z)

ĥo

















eikx+λt,

where the x and t dependence of each quantity has been explicitly pulled out of the

vector.
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Plugging Equation (5.20) into Equation (5.21) yields,

∇ · û = 0

= ikv̂(z)eikx+λt + 0 +
dŵ

dz
eikx+λt

= (ikv̂(z) +
dŵ

dz
)eikx+λt,

and hence,

−ikv̂ =
dŵ

dz

Let ψ(z) be the stream function for this system. This function will act as the

fluid’s potential function, and provide a helpful way to relate the four functions in

the parameter vector. Defining

−ψik = ŵ,

then also yields
dψ

dz
= v̂.

Using the linearized kinematic condition, Equation (5.24), allows ho to be written

in terms of ψ.

dĥ

dt
=

dhoe
ikx+λt

dt

= λhoe
ikx+λt

= ŵ(x, 0, t)

= ŵ(0)eikx+λt,

where z = 0 because this is a surface condition. Hence,

ho = ŵ(0)/λ =
−ik

λ
ψ(0).
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Observe that Equation (5.22) is a vector equation, and hence both x and z com-

ponents must conform to the equation. The x component piece of Equation (5.21)

yields a relationship between ψ(z) and P̂ .

dv̂(x, z, t)

dt
= λv̂eikx+λt

= λ
dψ

dz
eikx+λt

= −(1/ρ)∇P̂ (x, z, t) · î + ν∇2ũ(x, z, t)

= (
−ik

ρ
P̂ (z) + ν(∂zz − k2)v̂(z))eikx+λt

= (
−ik

ρ
P̂ (z) + ν(∂zz − k2)

dψ

dz
)eikx+λt.

Hence,

λ
dψ

dz
=

−ik

ρ
P̂ (z) + ν(∂zz − k2)

dψ

dz
, (6.1)

and further,

P̂ (z) = (
−ρλ

ik
+

νρ

ik
∂zz + ρiνk)

dψ

dz
.

Now the entire parameter vector can be written in terms of ψ.

















v̂(x, z, t)

ŵ(x, z, t)

P̂ (x, z, t)

ĥ(x, t)

















=

















v̂(z)

ŵ(z)

P̂ (z)

ĥo

















eikx+λt =

















dψ
dz

−ikψ

(−ρλ
ik

+ νρ
ik

∂zz + ρiνk)dψ
dz

−ik
λ

ψ(0)

















eikx+λt

Equation (5.21) can be used to solve for the functional form of ψ(z) by first

substituting ψ into the equation.

The x-component is given in equation (6.1). As for the z-component,

−ikλψ(z) = −(1/ρ)
∂P̂ (z)

∂z
− ikν(∂zz − k2)ψ(z). (6.2)
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Taking a z derivative of Equation (6.1) and subtracting ik times Equation (6.2)

removes the terms involving pressure from both equations, yielding the following

ODE:

0 = (∂zz − k2)(ν(∂zz − k2) − λ)ψ(z). (6.3)

Note that this is a product of two second order ODEs, meaning that a function

that makes either part of the product zero satisfies the equation. The general solution

to this ODE is

ψ(z) = Aekz + Ce−kz + Bemz + De−mz,

where m =
√

λ/ν + k2. Since the velocity of the fluid approaches zero at the limit of

infinite depth, z −→ −∞, C = D = 0. This leaves

ψ(z) = Aekz + Bemz. (6.4)

Now with this function for ψ(z), ψ(z) can be substituted into the surface conditions

to create a relation between λ and k. Using Equation (5.26), we see that:

0 = eikx+λt∂zzψ(0) + eikx+λtk2ψ(0)

= 2k2A + (k2 + m2)B.

Taking a similar approach to Equation (5.25) yields:

0 = (
λ

ik
− ν

ik
∂zz − ikν)∂zψ(0) + 2ikν∂zψ(0)

−ik3T

λ
ψ(0)

= (
Tk4

λ
+ kλ + 2νk3)A + (

k4T

λ
+ mλ + 3νmk2 − νm3)B.

These two surface conditions can be combined in a homogeneous matrix equation.





Tk4

λ
+ kλ + 2νk3 k4T

λ
+ mλ + 3νmk2 − νm3

2k2 k2 + m2









A

B



 =





0

0




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In order for non-zero solutions for A and B to exist, the coefficient matrix in this

homogeneous system must be singular, and hence must have determinant equal to

zero. Therefore,

0 = (k2 + m2)(
Tk4

λ
+ kλ + 2νk3) − 2k2(

k4T

λ
+ mλ + 3νmk2 − νm3)

= 4k2λ + 4k4ν +
Tk3

ν
+

λ2

ν
− 4k3ν

√

λ

ν
+ k2

In order to remove the dimensions from this equation the constants ν and T are

used to remove the dimension from k and λ. Let non-dimensional K and Λ be defined

as follows:

T

ν2
K = k

T 2

ν3
Λ = λ.

Multiplying the result of the determinant by ν7

T 4 gives:

0 = 4(
ν4

T 2
k2)(

ν3

T 2
λ) + 4

ν8

T 4
k4 +

ν6

T 3
k3 +

ν6

T 4
λ2 − 4(

ν6

T 3
k3)

√

ν3

T 2
λ +

ν4

T 2
k2

0 = (Λ + 2K2)2 + K3 − 4K3
√

Λ + K2.[11] (6.5)

This polynomial can now be analyzed to determine the conditions under which

growing solutions exist.

6.2 Analysis of Unforced Solutions

In this section, the physical ramifications of solutions to Equation (6.5) are investi-

gated. Figure (6.1) presents the real parts of the roots of the polynomial. Note, only

those solutions for which −K2 ≤ Re{Λ}, the real part of Λ, can be physical solutions.

Recall that
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ψ(z) = Aekz + Bemz,

from Equation (6.4), where m =
√

λ/ν + k2. If Λ < −K2 then λ/ν + k2 < 0. This

causes m to be complex, and ψ(z) to carry an imaginary exponential, which indicates

oscillatory fluid behavior in the z direction. In this unforced physical system, there is

no oscillatory impulse given in the z direction, and the z direction does not admit to

translational symmetry. Hence, oscillatory behavior will not occur in this direction,

and solutions for which Λ < −K2 are physically meaningless.

In figure (6.1), Λ = −K2 is graphed with the thick line. Note that two of the

solutions do not meet the physicality criteria while two of the solutions do. The

imaginary parts of the solutions that have physical relevance are plotted in figure

(6.2).
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Figure 6.1: Plots of the real parts of the four solutions to Equation (6.5). The thick line is the
physicality condition Λ ≥ −K2 which solutions must meet in order to be physically relevant. Note,
the two physically meaningless solutions are a complex conjugate pair, and hence have the same real
part.

Figures (6.1) and (6.2) show that the two physical solutions are a complex con-

jugate pair for small K. There is a bifurcation point at K = 1.72, where the solu-

tions become strictly real valued, and these real values deviate from each other. For
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K > 1.72 these are growing solutions, as they are strictly real valued. For K < 1.72

these solutions are oscillatory as caused by the complex exponent. Hence, growing

solutions do not exist for K < 1.72.
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Figure 6.2: Plot of the imaginary parts of the physically meaningful solutions to Equation (6.5). Note
that in order to be growing solutions, these must have no complex part. Hence, growing solutions
only exist for K > 1.72.

For large K, scalings were determined for the growing solutions by applying a

linear fit to a figure (6.3). Hence for K > 1.72,

K = −.9126Λ2

and

K = −.5001Λ

are the scalings for the physically relevant solutions for the unforced problem.
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Figure 6.3: Log-log plot of physically meaningful solutions to Equation (6.5). Linear fit lines are
presented, and correspond to the scalings given in the text.



Chapter 7

Excited Viscous Fluid Analysis

With the final blocks in place, now the full hydrodynamic system with forc-

ing can be considered. The first three sections of this chapter apply many of the

techniques highlighted previously in this thesis to the full problem, including non-

dimensionalization, Floquet Theory, and Fourier methods, and methods for solving

the unforced system from chapter 6. These sections closely follow Kumar’s linear

stability analysis. [9] The fourth section presents numerical solutions to the eigen-

value problem given by this system, and curves describing the boundary between

growing and bounded solutions. The last section examines how the non-dimensional

wave number K scales with both the non-dimensional forcing frequency Ω and the

minimum required non-dimensional amplitude A.

7.1 Setting Up the Equations

Note that this is the order ε linear system, in 2 dimensions. Also note that the first

two equations apply in the body of fluid, z < 0, while Equations (7.3) - (7.5) apply

only at the surface z = 0.
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dû

dt
= −(1/ρ)∇P̂ + ν∇2û (7.1)

∇ · û = 0 (7.2)

dĥ

dt
= ŵ (7.3)

−P̃ /ρ + 2ν
∂ŵ

∂z
= (σ/ρ)∇2ĥ (7.4)

∂v̂

∂z
+

∂ŵ

∂x
= 0 (7.5)

This is the same system given at the end of Chapter 5, with the exception that

T has been replaced by σ/ρ. Note that this system is symmetric with respect to

translations of the horizontal, or x, direction. Hence, the x-components of the fluid

velocity û(x, z, t) =< v̂(x, z, t), ŵ(x, z, t) >, ĥ(x, t) the fluid height, and the pressure

of the fluid P̂ (x, z, t), can be removed in the form of the exponential term eikx. In

other words,

û(x, z, t) = eikxû(z, t)

= eikx < v̂(z, t), ŵ(z, t) >

ĥ(x, t) = eikxĥ(t)

P̂ (z, t) = eikxP̂ (z, t)

Expanding Equation (7.2), yields:
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∇ · û = 0

=
∂(eikxv̂(z, t)

∂x
+

∂(eikxŵ(z, t)

∂z

= ikeikxv̂(z, t) + eikx ∂ŵ(z, t)

∂z
.

Thus,

−ikv̂(z, t) =
∂ŵ(z, t)

∂z
= ŵz(z, t). (7.6)

Writing the x components of Equation (7.1) separately, and applying Equation

(7.6) to yields:

eikx dv̂(z, t)

dt
= (i/k)eikx dŵz(z, t)

dt

= −(1/ρ)
∂(eikxP̂ (z, t))

∂x
+ ν∇2(eikxv̂(z, t))

= −(ik/ρ)eikxP̂ (z, t) + (iν/k)eikx(∂zz − k2)ŵz(z, t),

and thus

(i/k)
dŵz(z, t)

dt
= −(ik/ρ)P̂ (z, t) + (iν/k)(∂zz − k2)ŵz(z, t). (7.7)

Writing the z component similarly gives:

eikx ∂ŵ(z, t)

dt
= −(1/ρ)eikx ∂(P̂ (z, t))

∂z
+ νeikx(∂zz − k2)ŵ(z, t),

and hence
∂ŵ(z, t)

dt
= −(1/ρ)

∂(P̂ (z, t))

∂z
+ ν(∂zz − k2)ŵ(z, t). (7.8)
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In order to remove P̂ from these equations, consider combining Equations (7.7) and

(7.8) by taking a z derivative of Equation (7.7) and subtracting ik times Equation

(7.8) , as follows:

∂z((i/k)
dŵz(z, t)

dt
) − (ik)

∂ŵ(z, t)

dt
= ∂z(−(ik/ρ)P̂ (z, t) + (iν/k)(∂zz − k2)ŵz(z, t))

+ (ik/ρ)
∂(P̂ (z, t))

∂z
− (ikν)(∂zz − k2)ŵ(z, t)

= ∂z((iν/k)(∂zz − k2)ŵz(z, t)) − (ikν)(∂zz − k2)ŵ(z, t)

= (∂zz − k2)((iν/k)∂zz(ŵ(z, t)) − (ikν)ŵ(z, t)).

Multiplying both sides by k/i gives:

(∂zz − k2)(
dŵ(z, t)

dt
) = (∂zz − k2)(ν∂zz(ŵ(z, t)) − (k2ν)ŵ(z, t))

= (∂zz − k2)((∂zz − k2)νŵ(z, t)),

finally yielding

(∂zz − k2)(∂t − ν(∂zz − k2))ŵ(z, t) = 0. (7.9)

This equation will prove important in characterizing the solutions of ŵ(z, t),

though more information is needed about the time derivative of ŵ(z, t) taking these

solutions.

Another important condition on the solutions of ŵ(z, t) can be found quickly by

applying Equation (7.2) to Equation (7.5). Recall from Equation (7.2):

0 = ∇ · û

=
∂v̂(x, z, t)

∂x
+

∂ŵ(x, z, t)

∂z
,

and hence

−∂v̂(x, z, t)

∂x
=

∂ŵ(x, z, t)

∂z
. (7.10)
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Taking an x derivative of Equation (7.5) gives:

0 =
∂v̂z(x, z, t)

∂x
+

∂ŵx(x, z, t)

∂x

=
∂v̂x(x, z, t)

∂z
+

∂ŵx(x, z, t)

∂x

=
∂ŵx(x, z, t)

∂x
− ∂ŵz(x, z, t)

∂z

= (−k2)eikxŵ(z, t) − eikx∂zz(ŵ(z, t)),

and hence

(k2 + ∂zz)ŵ(z, t) = 0. (7.11)

It is important to note that this condition applies only at z = 0.

An important condition relating the vertical fluid velocity and the the fluid sur-

face height can be fashioned by considering Equation (7.4). From the hydrostatic

condition:

~F = (1/ρ)∇P̄ ,

where P̄ is the order zero component of P and ~F is the external force per unit mass.

In the case of periodic forcing,

~F = −(g − aω2 cos(ωt))ẑ ≈ −aω2 cos(ωt)ẑ,

where gravity has been ignored, and a is the maximum amplitude of the forcing, and

not the maximum acceleration as used in Chapters 3 and 4. Substituting for ~F , the

hydrostatic condition yields:

ρaω2 cos(ωt)ẑ = ∇P̄ ,

and further

ρaω2 cos(ωt) =
∂P̄

∂z
.

Integrating gives,

P̄ = ρaω2 cos(ωt)z + Po,
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where Po is the atmospheric pressure, Po = P (0).

Note that when linearizing about the hydrostatic condition, the fluid pressure can

be written as

P (z, t) = P̄ (εĥ(t), t) + εP̂ (εĥ(t), t)

= Po + ε(ρaω2 cos(ωt)ĥ(t) + P̂ ),

where P̂ is order ε in the body of the fluid.

To order ε,

P̃ (z, t) = ρaω2 cos(ωt)ĥ(t) + P̂ (z, t).

Substituting this expression into Equation (7.4), yields:

−aω2 cos(ωt)ĥ(x, t) − P̂ (x, z, t)/ρ + 2ν
∂ŵ(x, z, t)

∂z
= (σ/ρ)∇2ĥ(x, t)

= (σ/ρ)ĥxx.

Differentiating this equation with respect to x yields:

2ν
∂ŵz(x, z, t)

∂x
− P̃x(x, z, t)/ρ = (σ/ρ)ĥxxx + aω2 cos(ωt)ĥx(x, t).

Recall, that taking the x component of Equation (7.1) gives:

v̂t(x, z, t) = −P̂x/ρ + ν∇2v̂(x, z, t).

Substituting in this expression for P̂x, eliminates pressure from the equation as follows:

2ν
∂ŵz(x, z, t)

∂x
+ v̂t(x, z, t) − ν∇2v̂(x, z, t) = (σ/ρ)ĥxxx + aω2 cos(ωt)ĥx(x, t).



71

Differentiating with respect to x and then substituting v̂x = −ŵz from Equation

(7.2) removes the v dependence from the equation as shown:

2ν
∂2ŵz(x, z, t)

∂x2
− ∂ŵz(x, z, t)

dt
+ ν∇2ŵz(x, z, t) = (σ/ρ)ĥxxxx + aω2 cos(ωt)ĥxx(x, t).

Further simplifying this equation gives:

(ν(3∂xx + ∂zz) − ∂t)ŵz(x, z, t) = (σ/ρ)ĥxxxx(x, t) + aω2 cos(ωt)ĥxx(x, t).

Further, note that x derivatives of w(x, z, t), and h(x, t) only have the net effect

of creating a factor of ik. Hence, this equation can be re-written as follows:

(ν(−3k2 + ∂zz) − ∂t)ŵz(z, t) = (σ/ρ)k4ĥ(t) − ak2ω2 cos(ωt)ĥ(t). (7.12)

7.2 Non-Dimensionalization

Equations (7.3), (7.9), (7.11), and (7.12) constitute the full hydrodynamic system,

and allow the solutions to be characterized. Before proceeding on that road, it is

prudent to non-dimensionalize the equations in this system. This is accomplished

by first non-dimensionalizing time by setting T = ωt, and using T as the new time

variable. Note that this modulates all time derivatives by ω ∂
∂T

= ∂
∂t

. Making this

substitution, the full hydrodynamic system becomes:

(∂zz − k2)(ω∂T − ν(∂zz − k2))ŵ(z, T ) = 0 (7.13)

(ν(−3k2 + ∂zz) − ω∂T )ŵz(z, T ) = (σ/ρ)k4ĥ(T ) − ak2ω2 cos(T )ĥ(T ) (7.14)

(k2 + ∂zz)ŵ(z, T ) = 0 (7.15)

ω
dĥ

dT
= ŵ (7.16)

In order to remove dimension from the equations it is necessary to define a length

and time scales using some of the variables in the problem. For this task, ν and
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σ/ρ are used and the appropriate scales are l∗ = ν2/(σ/ρ), and t∗ = ν3/(σ/ρ)2.

Multiplying each equation by the appropriate dimension, (t∗2l∗, t∗2, l∗t∗, and t∗/l∗

for equations (7.13)-(7.16) respectively) and applying the following non-dimensional

variable definitions:

(σ/ρ)2

ν3
Ω = ω

(σ/ρ)

ν2
K = k

ν2

(σ/ρ)
A = a,

yields the following full hydrodynamic system:

(ν/(σ/ρ))((ν4/(σ/ρ)2)∂zz − K2)(Ω∂T − (ν4/(σ/ρ)2)∂zz + K2)ŵ(z, T ) = 0 (7.17)

(ν3/(σ/ρ)2)(−3K2+(ν4/(σ/ρ)2)∂zz−Ω∂T )ŵz(z, T ) = ((σ/ρ)/ν2)(K4+AK2Ω2 cos(T ))ĥ(T )

(7.18)

(ν/(σ/ρ))(K2 + (ν4/(σ/ρ)2)∂zz)ŵ(z, T ) = 0 (7.19)

Ω((σ/ρ)/ν2)
dĥ

dT
= (ν/(σ/ρ))ŵ. (7.20)

7.3 Floquet Solutions and the Eigenvalue Problem

The solutions for ŵ(z, T ) and ĥ(T ) can be written in Floquet form. Hence,

ŵ(z, T ) = eµT wp(z, T ) = eµT

∞
∑

n=−∞

wn(z)einT

ĥ(T ) = eµT hp(T ) = eµT

∞
∑

n=−∞

hne
inT ,
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where wp, and hp can be written as Fourier Series since they are 2π periodic. Note

that since these series are 2π periodic, they describe harmonic solutions. In order to

describe sub-harmonic solutions it is necessary to use the following series’ of the form:

ŵ(z, T ) = eµT

∞
∑

n=−∞,odd

wn(z)e
inT
2

with odd n as explained in Chapter 4. The analysis that follows is not largely influ-

enced by which series is used. Small distinctions do arise though, and these will be

pointed out throughout the discussion. Also note, that in order for these series to be

real, the coefficients must obey the following conditions:

w1 = w∗
−1,

and

h1 = h∗
−1

for the harmonic case. For the sub-harmonic case

w0 = w∗
−1.

Further note that the wn(z) are only functions of z, and that the hn are constants.

Equation (7.17) can be used to solve for the form of the wn(z) functions, as the

equation holds if:

0 = ((ν4/(σ/ρ)2)∂zz − K2)ŵ(z, T )

or

(Ω∂T − (ν4/(σ/ρ)2)∂zz − K2)ŵ(z, T ) = 0.

Substituting the Fourier expanded form of ŵ(z, T ) into these equations give the fol-

lowing sets of solutions

wn(z) = ane
((σ/ρ)/ν2)Kz + bne

−((σ/ρ)/ν2)Kz,

and

wn(z) = cne
((σ/ρ)/ν2)Qnz + dne

−((σ/ρ)/ν2)Qnz,
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where Qn is the positive root of Q2
n = K2+Ω(µ+in). Note, that Qn is slightly different

in the sub-harmonic case, where n is replaced by n/2 for odd n only. Applying the

condition that as z → −∞, wn(z) → 0, forces bn = dn = 0. Hence,

wn(z) = ane
((σ/ρ)/ν2)Kz + cne

((σ/ρ)/ν2)Qnz (7.21)

Substituting the Floquet/Fourier definitions of ŵ and ĥ into Equation (7.18) sig-

nificantly simplifies the expression:

ν3

(σ/ρ)2
(−3K2 +

ν4

(σ/ρ)2
∂zz − Ω∂T )ŵz(z, T ) =

(σ/ρ)

ν2
(K4 + AK2Ω2 cos(T ))ĥ(T )

ν5

(σ/ρ)3
eµT

∑∞

n=−∞( ν4

(σ/ρ)2
∂zzz − (3K2 + Ω(in + µ))∂z)wn(z)einT =

eµT
∑∞

n=−∞ hn(K4einT + AK2Ω2

2
ei(n+1)T + AK2Ω2

2
ei(n−1)T )

ν5

(σ/ρ)3
eµT

∑∞

n=−∞( ν4

(σ/ρ)2
∂zzz − (2K2 + Q2

n)∂z)wn(z)einT =

eµT
∑∞

n=−∞(K4hn + AK2Ω2

2
hn−1 + AK2Ω2

2
hn+1)e

inT .

For each n,

ν5

(σ/ρ)3
(

ν4

(σ/ρ)2
∂zzz − (2K2 + Q2

n)∂z)wn(z) = (K4hn +
AK2Ω2

2
hn−1 +

AK2Ω2

2
hn+1)

(7.22)

Equations (7.19) and (7.20) can be used to write ∂zwn(0), and ∂zzzwn(0) as mul-
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tiples of hn. First to get a relation between an and cn, Equation (7.19) will be used.

0 = (ν/(σ/ρ))(K2 + (ν4/(σ/ρ)2)∂zz)e
µT

∞
∑

n=−∞

wn(z)einT

0 =
∞

∑

n=−∞

(K2 + (ν4/(σ/ρ)2)∂zz)wn(z)einT

=
∞

∑

n=−∞

(K2 + (ν4/(σ/ρ)2)∂zz)(ane
((σ/ρ)/ν2)Kz + cne

((σ/ρ)/ν2)Qnz)einT

=
∞

∑

n=−∞

(2anK
2e((σ/ρ)/ν2)Kz + (K2 + Q2

n)cne
((σ/ρ)/ν2)Qnz)einT

Equation (7.19) holds at the surface, z = 0. Applying this restriction to the equation

yields:

0 =
∞

∑

n=−∞

(2anK2 + (K2 + Q2
n)cn)einT .

Further, since each einT is independent,

0 = 2anK2 + (K2 + Q2
n)cn. (7.23)

Note that this is true for all n. Equation (7.20) is also a surface condition and relates

an, and cn to hn as follows:

Ω((σ/ρ)/ν2)
dĥ

dT
= (ν/(σ/ρ))ŵ

Ω((σ/ρ)/ν2)eµT

∞
∑

n=−∞

(µ + in)hne
inT = (ν/(σ/ρ))eµT

∞
∑

n=−∞

(an + cn)einT .

Hence, for each n,

Ω((σ/ρ)2/ν3)(µ + in)hne
inT = (an + cn)einT

(Ω(σ/ρ)2(µ + in)/ν3)hn = an + cn. (7.24)

Combining Equations (7.23) and (7.24) yields the following relations between hn and
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an, and hn and cn.

Ω(σ/ρ)2(µ + in)

ν3(1 − 2K2

K2+Q2
n
)

hn = an

Ω(σ/ρ)2(µ + in)

ν3(1 − K2+Q2
n

2K2 )
hn = cn.

Plugging these equations in for an and cn, yields formulas for ∂zwn(0), and ∂zzzwn(0)

in terms of hn.

∂zwn(0) = an((σ/ρ)/ν2)K + cn((σ/ρ)/ν2)Qn

= (
KΩ(σ/ρ)3(µ + in)

ν5(1 − 2K2

K2+Q2
n
)

+
QnΩ(σ/ρ)3(µ + in)

ν5(1 − K2+Q2
n

2K2 )
)hn

= (
(σ/ρ)3

ν5
(K3 + KQ2

n − 2QnK2))hn

and

∂zzzwn(0) = (
K3Ω(σ/ρ)5(µ + in)

ν9(1 − 2K2

K2+Q2
n
)

+
Q3

nΩ(σ/ρ)5(µ + in)

ν9(1 − K2+Q2
n

2K2 )
)hn

= (
(σ/ρ)5

ν9
(K5 + K3Q2

n − 2Q3
nK2))hn

Plugging these formulas into Equation (7.22) gives a relation between hn, hn−1,

and hn+1.

(K5+K3Q2
n−2Q3

nK
2−(2K2+Q2

n)(K3+KQ2
n−2QnK2)−K4)hn =

−AΩ2K2

2
(hn+1+hn−1)

(7.25)

Let K5+K3Q2
n−2Q3

nK
2−(2K2+Q2

n)(K3+KQ2
n−2QnK2)−K4 = Br

n+Bi
n = Cn

Observe that the reality conditions on the Fourier series’ give a convenient way

to restrict the series’ to non-negative n for both harmonic and sub-harmonic waves.

Using these reality conditions, the following matrix equations can be setup for the

harmonic and sub-harmonic cases.
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for the sub-harmonic case.

7.4 Stability Analysis

The matrix equation can be solved as an eigenvalue problem of the form Ax = λBx.

Setting the Floquet exponent, µ, to zero explicitly determines the matrix A for both

cases. It is appropriate to set µ = 0 as this is the case when the solution is periodic,

which was an assumption necessary to approximate solutions with Fourier series to

this analysis. Solving for the eigenvalues of the matrix equation, and plotting these

values yields the following plot for Ω = 100000.
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Figure 7.1: Plot of K vs. A for Ω = 100000, where the plotted points correspond to eigenvalues of
Equations (7.26) and (7.27). Note that the + symbols correspond to sub-harmonic solutions, while
the o symbols correspond to harmonic solutions.



79

0.5 1 1.5 2 2.5 3 3.5 4

x 10
−7

0

1

2

3

4

5

6

7

8

9

10
x 10

7

N
on

−
di

m
en

si
on

al
 F

or
ci

ng
 A

m
pl

itu
de

 (
A

)
Non−dimensional Wavenumber (k)

1e−10

Figure 7.2: Plot of K vs. A for Ω = 10−10, where the plotted points correspond to eigenvalues of
Equations (7.26) and (7.27). Note that the + symbols correspond to sub-harmonic solutions, while
the o symbols correspond to harmonic solutions. In the low frequency limit, these stability curves
approach the stability curves for the inviscid Mathieu analysis in Chapter 3.

7.5 K Scalings

The main goal of this work was to compute the relationship between the surface wave

number and the forcing frequency. With the stability curves provided in section 7.4,

this is now possible. Stability curves were produced for values of Ω between 10−15

and 1010, and on each plot the minimum amplitude needed to cause instability was

found along with the wave number value where that minimum occurred. Log-log plots

of wave number vs. minimum amplitude and forcing frequency vs. wave number are

given in figures (7.3) and (7.4).

In figure (7.3), note that 2 distinct regimes exist. Using a linear curve fit, power

laws and regime ranges can be discerned. For large K, K > .378,

a = .7707k−1,

corresponding to the blue line. For small values of K, .378 > K,
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Figure 7.3: Log-log plot of non dimensional minimum forcing required for instability versus non
dimensional wave number. Linear fits for the data are graphed as given in the text.

a = 1.253
ν

(σ/ρ)
1
2

k
−1
2 ,

which is given by the green line. Figure (7.4) similarly exhibits two separate K

and Ω scalings regimes. For large K, K > .2068,

k = .47206ν
−1
2 ω

1
2 ,

as shown by the blue line while for K < .2068,

k = .62616(σ/ρ)
−1
3 ω

2
3 ,

corresponding to the green line. Note that the values of K used to define these ranges

were taken from the intersection point of the linear fits performed on figures (7.3) and

(7.4). Hence, these are approximate ranges, and the K = .2068 transition in figure

(7.4) corresponds to the K = .378 transition in figure (7.3).

To better understand these regimes, it is important to observe which constant fac-

tors matter in which regime. For large Ω, viscosity determines the wave number, while
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Figure 7.4: Log-log plot of non dimensional wave number vs. non dimensional forcing frequency.
Linear fits for the data are graphed as given in the text.

for small Ω viscosity is dominated by surface tension in determining the wave number.

This understanding of these scalings and precise statement of the results are im-

portant and will hopefully be of immediate use in precisely identifying the constant

relating surface wavelength to droplet size.



Chapter 8

Conclusion

In this work, Faraday Excitation of highly viscous fluids was studied with linear

stability analysis of the full hydrodynamic system. For large K, where K is the

non-dimensional wave number, it was found that:

k = .47206ν
−1
2 ω

1
2 ,

where ω is the forcing frequency, and ν is the fluid viscosity. For small K,

k = .62616(σ/ρ)
−1
3 ω

2
3 ,

where σ is the surface tension and ρ is the fluid density.

These scalings are being used to determine the constant relating the size of parti-

cles ejected from a surface wave under Faraday Excitation to the wavelength of that

wave. This is described in more detail in section (1.1). Figure (8.1) presents prelimi-

nary results of the ultrasonic atomization as compared to the theoretical predictions

for the wavelength of surface waves as a function of non dimensional forcing frequency.

The four data points predict a value for the constant multiplier to the surface wave

wavelength that yields particle radius of .154. This value has large error, though,

since there are currently only 4 data points. Note that all of the current data points

test the low Ω regime. In future work a more detailed analysis of this experiment

will be given. Additionally, data points to test a wider range of the Ω values will be

presented. Hopefully this will include values in the large Ω range.
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Figure 8.1: Log-log plot comparing particle sizing data points to theoretical predictions. The data
points shown are of the non-dimensional particle radius (y axis) vs. the given non-dimensional
oscillating frequency (x axis). The lines are the log scale predictions for the non-dimensional surface
wavelength of excited waves as a function of non-dimensional forcing frequency. Note that the solid
line is the low frequency scaling, while the dashed line is the high frequency scaling. The data gives
a value for the constant multiplying the surface wavelength to yield particle radius of c = .154, and
hence the scalings were appropriately shifted for this plot. This is only very perliminary data, and
consequently the error in the value of the constant is large since only 4 data points have been taken.
However, the error on each data point is small, error bars are shown in this plot.
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