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Abstract

The Effects of Torsion on Anomalous Diffusion in Helical Pipe

Flow

by Michael B. Gratton

May 2002

This thesis investigates the advection and diffusion of a passive scalar in helical pipes.

By assuming that the curvature and torsion are small (equivalent to small Dean num-

ber) and the Reynolds number is moderate, we derive a closed form approximation

for the induced recirculating flow. We find a stream function for the Poincaré map

between cross sections that depends only on the geometric parameter λ, a rescaled

ratio of torsion to curvature. Using a simple numerical scheme, we simulate advection-

diffusion by composing this map with random-walk diffusion. We discover four mixing

time scales, including two “anomalous” mixing time scales, where the width of the

distribution of the mixing scalar is proportional to t (as postulated by Mezic & Wig-

gins (1994)), rather than
√

t. The effect of λ on the mixing is studied, and scaling

laws for each regime are developed.



Table of Contents

List of Figures iii

Chapter 1: Introduction 1

1.1 Plan of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 A basic introduction to diffusion and advection . . . . . . . . . . . . 2

1.3 Taylor diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Chapter 2: Derivation of toroidal and helical flow fields 6

2.1 A general pipe coordinate system . . . . . . . . . . . . . . . . . . . . 6

2.2 Torodial pipe flow equations . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Helical pipe flow equations . . . . . . . . . . . . . . . . . . . . . . . . 12

Chapter 3: Stream functions for toroidal and helical pipe flow fields 14

3.1 A method for creating stream functions . . . . . . . . . . . . . . . . . 14

3.2 Deriving the stream functions . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Consequences of the helical stream function . . . . . . . . . . . . . . 20

Chapter 4: Numerical methods 21

4.1 Simulating advection . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Simulating diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Composing advection and diffusion: error analysis . . . . . . . . . . . 26

4.4 Flow visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28



Chapter 5: The effects of torsion on mixing 33

5.1 The four mixing regimes . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Non λ-dependent mixing regimes . . . . . . . . . . . . . . . . . . . . 35

5.3 λ-dependent anomalous mixing . . . . . . . . . . . . . . . . . . . . . 36

5.4 Taylor Dispersion dependence on torsion . . . . . . . . . . . . . . . . 39

Chapter 6: Conclusion 40

6.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Bibliography 42

ii



List of Figures

2.1 Cross-sectionally defined coordinates . . . . . . . . . . . . . . . . . . 7

3.1 Streamlines for toroidal velocity field . . . . . . . . . . . . . . . . . . 16
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Chapter 1

Introduction

We consider a rigid pipe with a circular cross-section of constant radius.

The pipe is full of fluid being forced through it by a constant pressure gradient,

and the fluid inside of the pipe flows with a local velocity depending on the

bends and twists of the pipe, due to viscous drag along the walls of the pipe and

centripetal forces caused by bends. This thesis considers helical pipes (with

constant curvature and torsion), as well as the degenerate cases of toroidal

pipes (constant curvature and no torsion) and straight pipes (no curvature or

torsion). Note that curvature and torsion here refer to the properties of the

centerline of the pipe. We want to model the fluid motion for various values

of curvature and torsion in order to study the effects of the geometry on the

velocity field and the fluid mixing inside the pipe.

For this problem, we will use a passive scalar H(x, y, s, t), a scalar valued

function that is deformed by the fluid flow. A passive scalar is an idealization

of the physical problem of dye mixing in water: even very high concentrations

(large values of H) result in no change to the fluid behavior at that point;

the scalar has no mass, requires no momentum to move it about – in every

respect it is simply a place-marker. We control the initial position of the scalar

(initial conditions on H) and we want to measure its shape at a later time.

The degree of mixing of H is measured via the standard deviation of H. This

will be defined later rigorously in terms of the moments of H, but for now it
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is enough to know that this is the “shoulder to shoulder width” of a plot of H

with respect to one of its spatial variables. For example, the mixing along the

z-axis would be characterized by σz(t). Plots of σz versus time might display

various mixing regimes where σz grows with different powers of t. Note that

all other spacial dimensions are averaged out by this definition of mixing.

1.1 Plan of the thesis

This chapter will develop the basic forces which act in mixing providing a basic

introduction to the concepts covered in depth later: advection, diffusion, and

Taylor diffusion (following Taylor’s more simplistic derivation [10]). Chapter 2

develops flow equations for the toroidal and helical pipe geometries following

the work of Dean [2], Ward-Smith [11], and Germano [3] [4]. This analysis

is complemented in Chapter 3 by the derivation of a general stream function

for the Poincaré map between helical pipe cross-sections. Using this map

and a random-walk simulation of diffusion, Chapter 4 outlines a particle-based

numerical mixing simulation, analyzes the dependence of the numerical error on

the system parameters, and provides a gallery of pictures displaying the effect

of geometry on the fluid mixing. This simulation leads us to the description of

the effects of torsion on the mixing in Chapter 5, specifically, the dependence

of mixing regimes on pipe geometry. We also develop a method for averaging

particles on streamlines that is useful for calculating σ in the limit of small

diffusion or small timescales. Finally, Chapter 6 summarizes the major findings

of the thesis and provides suggestions for future work in this area.

1.2 A basic introduction to diffusion and advection

Two important factors influence mixing: diffusion and advection. Diffusion is

the tendency of high concentrations of a substance to spread into neighboring
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regions. If we consider heat, the heat diffuses so as to make hot spots cooler

and nearby cool spots warmer. This is governed by the diffusion equation,

Ht = D∇2H, (1.1)

where H = H(x, y, z, t) represents the concentration of some scalar (heat, dye,

etc.) at a point in space and time. Note that we are using the subscript

t to denote a partial derivative in time. This equation is generally useful

in describing any diffusive effect. Note that this equation is in the Eulerian

frame, i.e. the frame of an observer in the lab watching dye diffuse in water.

Qualitatively, peaks of high concentration are eroded down to hills over time.

A more physical explanation for this can be seen in the Lagrangian, or particle,

frame. From this perspective, each molecule of dye or blob of heat experiences

random collisions. These collisions are more frequent when there are more

particles nearby, so areas of high concentration tend to spread apart. Diffusion,

as considered in this problem, is a small but important effect. The scale of D is

typically less than 10−4, while many of the other length scales in the problem

considered are on the order of unity.

In addition to movement due to random collisions, particles also experience

forces due to the fluid flow in the pipe. This problem assumes that the flow

in the pipe is steady, incompressible, and irrotational. Essentially, the fluid in

the pipe is non-turbulent and moving fairly slowly. In the Eulerian frame, we

can state this as the basic advection equation,

Ht + ~u · ∇H = 0, (1.2)

which moves H = H(x, y, z, t) about the pipe with a velocity given by ~u =

~u(x, y, z). Here ~u does not depend on t because the flow was assumed to be

steady. Determining ~u depends on the geometry of the pipe.
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1.3 Taylor diffusion

In pipe-flow mixing problems, the famous result of Taylor [10] provides great

insight into the long-term mixing behavior. Taylor discovered that for t À 1/D

and D is small, the concentration H spreads self-similarly about a point moving

at the average velocity down the pipe. This self-similar spread results in

σ =
√

2Deff t, (1.3)

where σ is the standard deviation width of the passive scalar along the axis of

the pipe, Deff ≈ k/D, and k is determined by the pipe geometry. We will follow

Taylor’s heuristic derivation of this result. Jones and Young provide a more

mathematically complete result [12]. We consider a straight pipe with a circular

cross-section of constant radius, and impose a no-slip boundary condition on

the walls. The steady, incompressible flow of fluid is governed by pipe Bizet

flow, giving rise to the the advection-diffusion equation

Ht + u0(1 − r̃2/a2)ẑ · ∇H = D∇2H, (1.4)

which is the combination of (1.1) and (1.2). Note that the velocity field is

the result of viscous drag along the walls slowing fluid at the pipe walls to a

standstill, while fluid at the centerline moves with the maximum speed, u0. If

we consider the problem in the obvious choice of cylindrical coordinates, it is

natural to rescale all lengths by the pipe radius: r = r̃/a. If we assume that D

is small compared to u0, then movement of concentration H in the z-direction

due to the diffusive term can be neglected:

Ht + u0(1 − r2)Hz =
D

a2
(Hrr +

1

r
Hr). (1.5)

Since the velocity field is simple, we consider changing frames to take advantage

of self-similar behavior. Let z̃ = z − 1

2
u0t. This yields

a2

D
Ht +

a2u0

D
(
1

2
− r2)Hz̃ = Hrr +

1

r
Hr. (1.6)
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We can solve the above in the case where advection is a slower phenomena

than the averaging of radial variations due to diffusion. In this case, Ht is

approximately 0 and Hr is practically independent of z. Using the no-slip

boundary conditions, we have

H = Ĥ +
a2u0

8D
Hz̃(r

2 − 1

2
r4), (1.7)

where Ĥ is H evaluated at r = 0. The flux across a cross-section at any z̃ can

be written as

Q = −2πa2

∫ 1

0

u0(
1

2
− r2)Hr dr. (1.8)

Another consequence of the assumption that transport is slow compared to

cross-sectional diffusion is that the mean concentration in a cross-section,

H̄z̃(z̃), is approximately the same as Ĥz̃. Using H from (1.7) and the above

expression for Q, we find

Q = −πa4u2
0

192D
Ĥz̃. (1.9)

If we let

Deff =
a2u2

0

192D
, (1.10)

and use the fact that no fluid escapes during the flow of H̄, we have the fluid

continuity expression:

Qz̃ = −πa2H̄t, (1.11)

or, combined with the above:

Deff H̄z̃z̃ = H̄t. (1.12)

Notice that this is simply a one dimensional diffusion equation for the cross-

sectionally averaged concentration H̄. The assumptions made on the relative

time scales of advection in z versus diffusion in r imply that this result is valid

when H is well-diffused across the streamlines of the advective velocity u, i.e.,

when t À 1/D.



Chapter 2

Derivation of toroidal and helical flow fields

The geometry of the pipe determines the velocity field found inside. In

this section, we investigate the helical geometry by building upon well-known

results for the straight pipe and the toroidal pipe. The first task, developing

a general coordinate system for any pipe geometry is undertaken in Section

2.1 by using a cross-sectional defined system. The straight-pipe equations are

presented and analyzed. In Section 2.2, we follow Dean’s [2] famous derivation

of the toroidal pipe flow field. Then, using the work of Germano [3], we extend

this field to general helical geometries in Section 2.3.

2.1 A general pipe coordinate system

We introduce a cross-sectionally defined coordinate system (x, y, s) as shown

in Figure (2.1). Let ~q be a path parameterizing the center-line of the pipe, and

let s represent the arc-length along the path. We define the x coordinate to

point in the opposite direction of the inward-pointing normal of ~s, and the y

coordinate to point in the direction of the binormal. This system is equivalent

to labeling each cross section with a value of s and mapping the particles old x

and y positions into the new cross-section. For some equations of fluid motion,

it may be convenient to replace t derivatives with s derivatives in the equations

of motion, as particles travel in only one direction for increasing time.

As an example, consider the straight pipe with (non-dimensional) cross-

sectional radius one. We can parameterize the center-line by a straight line
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Figure 2.1: The coordinates are defined in relation to the Frenet frame of path ~s parameterizing the
center-line of the pipe, with x oriented opposite of the inward-pointing normal and y oriented along
the binormal. Note that the distance traveled along ~s = s = Rϕ, where R is the radius of curvature.

path, meaning that the s-coordinate is now just another spatial dimension

globally orthogonal to x and y. In fact, since the normal and binormal do not

change orientation, the cross-sectional definition is just a standard euclidian

system. Note that for other paths, the coordinates are only locally orthogonal.

The orientation of x and y in a given cross-section is not necessarily the same

as the orientation of x and y any other cross-section.

The fluid motion in the straight pipe obeys

Ht + u0(1 − r2)Hs = D∇2H, (2.1)

where u0 is the velocity of the pipe at the center-line and r is the radial

distance from the center-line to a point in the cross-section. This is the same

as equation (1.4) for Poiseuille flow. Normally, the centerline velocity u0 is

much larger than D, as the advective forces due are much more important

than the diffusive forces. This situation and its anomalous mixing regimes are
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investigated in depth in Latini & Bernoff [7].

2.2 Torodial pipe flow equations

We ignore the effects of diffusion and concentrate on describing the velocity

field ~u inside the pipe. In the toroidal pipe, the pipe center-line ~q has constant

curvature κ and no torsion. For this derivation it is convenient to introduce

radial coordinates (r, θ) into the cross-section. Let ~u = (u, v, w) = (ṡ, ṙ, θ̇).

Following Ward-Smith [11], we write the first fundamental form for this coor-

dinate system:

(dq)2 = (1 +
r

R
sin θ)2(ds)2 + (dr)2 + (r)2(dθ)2. (2.2)

Notice that this is nearly a cylindrical system. The different scale factor on

ds arises from the curvature of the pipe causing a point following a line in s

to also change position in the cross-section. We now assume the flow to be

steady and viscous. The problem is governed by the steady, incompressible

Navier-Stokes continuity and momentum equations

∇ · ~u = 0 (2.3)

and

~u · ∇~u =
1

ρ
∇P + ν∇2~u, (2.4)

where P is the pressure gradient driving the flow in the pipe, ρ is the density

of the fluid, and ν = µ/ρ is the kinematic viscosity of the fluid. Assuming that

the flow is laminar, we omit the partial derivatives of ~u with respect to s. For

(2.3), we have
∂v

∂r
+

1

r

∂w

∂θ
+

v

r
+

v sin θ + w cos θ

R + r sin θ
= 0, (2.5)
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and for (2.4), we have the three equations

v
∂u

∂r
+

w

r

∂u

∂θ
+

u(v sin θ + w cos θ)

R + r sin θ

= −1

ρ

(

R

R + r sin θ

)

∂P

∂s
+ ν

[

+
∂2u

∂r2
+

1

r2

∂2u

∂θ2
− u

R + r sin θ
+

1

r

∂u

∂r

+
1

r

∂u

∂r
+

1

R + r sin θ

(

sin θ
∂u

∂r
+

cos θ

r

∂u

∂θ

)]

,

(2.6)

v
∂v

∂r
+

w

r

∂v

∂θ
− w2

r
− u2 sin θ

R + r sin θ

= −1

ρ

∂P

∂r
+ ν

[

∂2v

∂r2
+

1

r

∂v

∂r
+

v

r2
+

1

r2

∂2v

∂θ2
− 2

r2

∂w

∂θ

+
1

R + r sin θ

(

sin θ
∂v

∂r
+

cos θ

r

∂v

∂θ
− w cos θ

r

)

− sin θ

(R + r sin θ)2
(v sin θ + w cos θ)

]

,

(2.7)

and

v
∂w

∂r
+

w

r

∂w

∂θ
− vw

r
− u2 cos θ

R + r sin θ

= − 1

rρ

∂P

∂θ
+ ν

[

∂2w

∂r2
+

1

r

∂w

∂r
+

w

r2
+

1

r2

∂2w

∂θ2

− 2

r2

∂v

∂θ
+

sin θ

R + r sin θ

∂w

∂r
+

cos θ

R + r sin θ

(

1

r

∂w

∂θ
+

v

r

)

− cos θ

R + r sin θ
(v sin θ + w cos θ)

]

.

(2.8)

Let ε = a/R. Assuming that the radius of curvature is much larger than the

radius of the pipe, i.e. R À a or ε ¿ 1, the behavior of this system is a

perturbation of Poiseuille flow:

u = A(a2 − r2) + ũ; v = 0 + ṽ; w = 0 + w̃;
P

ρ
= Cs +

p̃

ρ
, (2.9)

where A and C are constants and the tilde-marked terms are small perturba-

tions. If the tilde terms are small, then the product of tilde terms can be safely
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neglected. Rewriting equations (2.5)–(2.8) using the perturbation in (2.9), we

have
∂ṽ

∂r
+

ṽ

r
+

1

r

∂w̃

∂θ
= 0, (2.10)

−2Arṽ = (1 − rε sin θ)

(

C +
1

ρ

∂p̃

∂s

)

+ ν

(

∂2

∂r2
+

1

r

∂

∂r

1

r2

∂2

∂θ2

)

(

A(a2 − r2) + ũ
)

+ νε

[(

∂

∂r
+

1

r

)

(

A(a2 − r2) sin θ
)

+
1

r

∂

∂θ

(

A(a2 − r2) cos θ
)

]

,

(2.11)

−εA2(a2 − r2)2 sin θ =
1

ρ

∂p̃

∂r
− ν

r

∂

∂θ

(

∂w̃

∂r
+

w̃

r
− 1

r

∂ṽ

∂θ

)

, (2.12)

and

−εA2(a2 − r2)2 cos θ = −1

r

1

ρ

∂p̃

∂θ
+ ν

∂

∂r

(

∂w̃

∂r
+

w̃

r
− 1

r

∂ṽ

∂θ

)

. (2.13)

where all higher-order tilde terms and terms second order or higher in ε have

been dropped. In equation (2.11), we have both “large” and “small” terms.

We can solve for C by balancing the large terms:

0 = C − 2Aν − 2Aν, (2.14)

and so,

C = −4Aν. (2.15)

Equation (2.11) becomes

−2Arṽ =
1

ρ

∂p̃

∂s
− ε(6νAr sin θ) + ν

(

∂2ũ

∂r2
+

1

r

∂ũ

∂r
+

1

r2

∂2ũ

∂θ2

)

. (2.16)

Now we separate variables. Let a circumflex represent a quantity which is a

function of r alone. We make the substitutions

ũ = û sin θ, (2.17)

ṽ = v̂ sin θ, (2.18)

w̃ = ŵ cos θ, (2.19)

p̃

ρ
= p̂ sin θ, (2.20)
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into equations (2.10), (2.12), (2.13), and (2.16). Using a no slip boundary

condition (~u = 0 at r = a), we can solve these equations for the fluid velocity.

For convenience, we rescale velocity by C/(4ν) and distance by a. This gives

u = 2(1 − r2)

(

1 − ε
3

4
r sin θ + ε

(Re)

11520
r sin θ[19 − 21r2 + 9r4 − r6]

)

, (2.21)

v = ε
(Re)

144
sin θ(4 − r2)(1 − r2)2, (2.22)

w = ε
(Re)

144
cos θ(1 − r2)(4 − 23r2 + 7r4), (2.23)

where (Re) = 2U/ν is the Reynolds number. These equations have only two

parameters, ε and (Re). Following our perturbation assumption, ε is small

compared to 2(1 − r2), leading us to discard the ε terms in the equation for

u. Note that we keep terms that are first order in ε for v and w, as these

terms qualitatively change the flow from Poiseulle flow. We will want to find

a stream function for the velocity field in the next chapter. For this, it is

easier to use Cartesian coordinates in the cross-section. We make the change

of variables x = r sin θ and y = r cos θ. The above equations can be written in

the following form due to Aref et.al. [5]:

ẋ =
(Re)ε

144

[

h(r) +
y2

r
h′(r)

]

,

ẏ = −(Re)ε

144

xy

r
h′(r),

ṡ = 2(1 − r2). (2.24)

The function h(r) is common to both ẋ and ẏ and is given by

h(r) =
1

4
(4 − r2)(1 − r2)2. (2.25)

If we rescale time by (Re)ε/144 and rescale s by (Re)ε/288 we arrive finally at

ẋ = h(r) +
y2

r
h′(r),



12

ẏ = −xy

r
h′(r),

dots = 1 − r2. (2.26)

Examining these equations, we see that the centripetal force on the fluid in-

duces rotating velocity fields in x and y, but that the behavior in the s direction

is just Poiseuille flow. Figure (3.2) in the next chapter shows the streamlines

of this flow field.

2.3 Helical pipe flow equations

Now we will extend the previous equations to situations with both constant

curvature κ and constant torsion τ . Examining the geometry reveals that re-

using our previous toroidal coordinate system results in a first fundamental

form of

(dq)2 = [(1 − κr sin θ)2 + τ 2r2](ds)2 + (dr)2 + r2(dθ)2 + 2τ 2dsdθ, (2.27)

which is not orthogonal due to the dsdθ term. However, if we include a τs

rotation, we can create terms to cancel the non-orthogonal piece and create an

orthogonal system:

(dq)2 = [1 − κr sin(θ + τs)](ds)2 + (dr)2 + r2(dθ)2. (2.28)

Germano [3] showed that the flow in this coordinate system has only a second

order dependence on τ . Thus, we can use our formula for flow in the toroidal

pipe, (2.26), by changing basis to the new helical coordinate system, (2.28), to

describe the flow at leading order. That is, the toroidal flow field is present in

each cross-section of the helical pipe, but the x-y coordinates it is defined with
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respect to are rotating as the binormal rotates along path ~q:

ẋ = h cos(λs) +
h′

r
yx sin(λs) +

h′

r
y2 cos(λs) (2.29)

ẏ = −
(

h sin(λs) +
h′

r
yx cos(λs) +

h′

r
x2 sin(λs)

)

(2.30)

ṡ = 1 − r2. (2.31)

where the geometry parameters have been combined into λ = q0τ/κ and h =

h(r) as defined in (2.25). The scale-factor q0 = 144ν/U balances the rescaling

of s. Like the torus, there is a rotating velocity field in the cross-section, but

there is also a rotation of the toroidal velocity field. Plots of the streamlines

of this flow field are shown in Figure (3.2), and Figure (4.3) shows the effect

of the flow on a simple initial condition.



Chapter 3

Stream functions for toroidal and helical pipe flow fields

In this section, we transform the flow field for the helical pipe into a

Poincaré map between cross-sections. This map provides insight into the na-

ture of the DEs and helps to clarify the nature of the flow when λ is large.

Rather than construct the map directly, we will develop it by constructing

a stream function for the flow. Section 3.1 details a method for the general

construction of a stream function, and Section 3.2 uses this method to find

the toroidal and helical stream functions. Finally in Section 3.3 we discuss the

information provided by the helical stream function.

3.1 A method for creating stream functions

Suppose the motion of some particle was prescribed by ẋ = f(x, y) and ẏ =

g(x, y). We want to construct a stream function ψ such that

ψx = −g(x, y) (3.1)

and

ψy = f(x, y), (3.2)

where the subscript represents a partial derivative. Working directly, we can

integrate (3.1) to get

ψ =

∫

f(x, y)dy + w(x),
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where w(x) is an unknown function of x from the integration. To find w(x),

we will make use of property (3.2) by differentiating with respect to x:

ψx =

∫

fx dy + wx = −g(x, y).

Now we can see that

wx = −g −
∫

fx dy,

and so

w = −
∫

g dx −
∫ ∫

fx dy dx.

Thus, our stream function is

ψ =

∫

f(x, y) dy −
∫

g dx −
∫ ∫

fx dy dx. (3.3)

From the derivation, it is clear that (3.3) obeys Properties (3.1) and (3.2).

Note that if fx = gy, then ψ collapses to only the first term in Equation (3.3).

3.2 Deriving the stream functions

Both the toroidal and the helical flow fields are simple enough to permit the

use of the above technique for constructing stream functions.

For the torus, the stream function for the Poincaré map and the stream

function for the flow field are identical, as the Dean Equations describe all of

the effects of the flow. We apply the formula (3.3) to equation (2.26). This

yields

ψtorus =

∫

h +
h′

r
y2 dx +

∫

h′

r
xy dy −

∫ ∫

∂

∂x

(

h +
h′

r
y2

)

dy dx.

Notice that fx = gy in this problem. Thus, the solution reduces to

ψtorus =
y

4
(4 − r2)(1 − r2)2 = yh, (3.4)
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Figure 3.1: The streamlines for the toroidal velocity field are symmetric about the x-axis.

where h = h(r) defined in equation (2.25). The toroidal stream function

depends on y and r, but not x. It is symmetric about the x-axis and varies at

different values of y. A plot of the level sets of ψtorus is shown in Figure 3.2.

In the case of the helix, torsion has no leading-order effect on the flow.

However, the orientation of the flow changes in each cross-section due to the

twist in the helix. A Poincaré map for this problem is the composition of

the τs rotation of the coordinates described in equation (2.28) with the Dean

Equation stream function.

To find this stream function, we will first rewrite the helix DEs to remove

time dependence, then we will construct the stream function.
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In the Dean Equations,

ẋ = h + y2h′

r

ẏ = −xy
h′

r

ṡ = 1 − r2,

we note that ṡ only depends on r and will not be effected by any rotation in

the cross-section. Also, since neither t nor s appear in the equations for ẋ and

ẏ, we can rewrite the equations be substituting an s derivative for the time

derivatives by dividing by ṡ. This gives us

∂x

∂s
= (h + y2h′

r
)/(1 − r2) (3.5)

∂y

∂s
= xy

h′

r
/(1 − r2). (3.6)

Next, we will adopt a vector notation for conciseness. Let ~x = (x y)T be the

unrotated coordinates in the current cross-section (ie, the coordinates of the

Dean Equations), and let ~f = (∂x
∂s

∂y

∂s
)T. Define

R =





cos(λs) sin(λs)

− sin(λs) cos(λs)



 ,

where the angle λs is the angle between the binormal in the cross-section s as

measured against the binormal in the initial cross-section. Let ~X = (X Y )T

be the rotated coordinates defined by ~X = R~x. Now we change (3.5) to the

rotated coordinates by differentiating the coordinate relationship with respect

to s, arriving at
∂ ~X

∂s
=

∂R

∂s
~x + R

∂~x

∂s
. (3.7)

To find ∂~x
∂s

, we conjugate ~f by R−1 and repeatedly use our coordinate relation-
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ship to see that

∂ ~X

∂s
=

∂R

∂s
~x + RR−1 ~f(R~x).

=
∂R

∂s
R−1 ~X + ~f( ~X)

= λ





0 −1

1 0



 ~X + ~f( ~X). (3.8)

Translating (3.8) out of vector notation, we have

∂X

∂s
= −λY + (h + Y 2h′

r
)/(1 − r2) (3.9)

∂Y

∂s
= λX + XY

h′

r
/(1 − r2) (3.10)

Now we can find a stream function using formula (3.3):

ψhelix =

∫

∂X

∂s
dY −

∫

∂Y

∂s
dX −

∫∫

∂

∂X

(

∂X

∂s

)

dY dX.

Which reduces to

ψhelix =
λr2

2
(
r2

2
− 1) +

y

4
(4 − r2)(1 − r2)2 (3.11)

=
λr2

2
(
r2

2
− 1) + ψtorus.

Plots of the streamlines for various values of λ appear in Figure 3.2.
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3.3 Consequences of the helical stream function

In equation (3.11), ψhelix is just a perturbation of ψtorus. For λ = 0, we

recover ψtorus. For, λ À 1, the λ dependent piece is radially symmetric,

implying that the streamlines become circles centered about the origin. We

can understand this limit to be flow in a straight pipe measured in a (now

nonsensical) helical coordinate system. The rotation of each particle on a

circular streamline exactly counteracts the rotation of the helical coordinate

system, implying that particles actually do not actually move in x or y when

changing cross-section, as is the case in the straight pipe.



Chapter 4

Numerical methods

Recall from equation (1.4), in the Eulerian (lab) frame, the advection-

diffusion problem can be written

Ht + ~u · ∇H = D∇2H, (4.1)

where H is the scalar distribution, and ~u is the velocity of the fluid at any

point. This equation consists of two pieces: advection and diffusion. They can

be written separately as

Ht + ~u · ∇H = 0 (4.2)

and

Ht = D∇2H. (4.3)

In our simulation, we want to take advantage of this splitting by simulating

the effects of advection and diffusion separately. The general framework is as

follows: we inject a large number of particles into the flow at time t = 0 in

some initial configuration (all at a single point, spread evenly around a cross-

section, etc). Then we simulate the effects of (4.2), followed by a simulation

of (4.3) to compute new particle positions. This Monte Carlo approach can

be used to generate statistics about the discrete distribution of the particles

at each time-step that approximate the continuous valued H with arbitrary

accuracy. These data report on the degree of mixing of the released particles.

Note that since our particles simulate passive scalars (such as dye molecules,

or even heat if the pipe is perfectly insulated), they do not interact. Particles
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may lie atop one another in our simulation. This can be physically justified

by noting that our spacial scale is very large compared to the size of a dye

molecule, so multiple particles in the same space could represent a particularly

high concentration of dye. In the case of particles representing quantities of

heat, this super-position of particles simply represents a “hot spot”. This

chapter will develop methods for solving the advection problem in Section 4.1,

methods for solving the diffusion problem in Section 4.2, and the combination

of these methods will be discussed in Section 4.3, along with an analysis of the

error committed. Finally, Section 4.4 will present pictures of the simulation in

action.

4.1 Simulating advection

To simulate advection, the movement of suspended particles in a fluid flow,

we must know the velocity at each point where there is a particle. To advect

scalars in a flow would require solving the Navier-Stokes Equations on a grid

in the pipe to determine the velocity of the flow at each point where there

is a particle, or knowing ~u and solving (4.2). The Navier-Stokes Equations

are PDEs and are slow to solve numerically, while solving (4.2) involves a

straightforward ODE integration. The boundary conditions imposed by the

pipe walls are already included in the formulation of ~u, sparing routines using

this method the time required to calculate their effects. The catch is that we

must be able to compute ~u analytically before the simulation. Fortunately, we

have already found ~u in (2.29) for our problem. We can then advect particles

by splitting (4.2) into a set of ODEs. If ~u = ux̂ + vŷ + wŝ, then let

ẋ = u, ẏ = v, ṡ = w. (4.4)

Using a fourth order Runge-Kutta method, we can solve (4.4) for each parti-

cle individually. This simulation method represents a good balance between
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accuracy and speed. In practice, we advect all of the particles each time-step,

rather than advecting one particle through all of the required time-steps be-

fore starting to move the next particle. This algorithm allows us to calculate

statistics based on the distribution at each time-step.

4.2 Simulating diffusion

Rather than solve the diffusion equation (4.3), we will simulate diffusion stochas-

tically through a random particle walk. The random walk formulation of dif-

fusion is a very physical one: particles diffuse because of random collisions

imparting random velocities. The net effect of this is to force particles apart.

At each time-step, a particle randomly moves some distance from its old posi-

tion according to

~xn+1 = (xt + ∆x)̂i + (yt + ∆y)ĵ + (st + ∆s)k̂, (4.5)

where the subscript represents the time-step. Determining ∆~x = ∆xî+∆yĵ +

∆sk̂ determines the nature of the random walk. To simulate diffusion prop-

erly, we want ∆~x to be a normal random variable with mean 0 and standard

deviation σ∆ the same as the width of our gaussian solution to (4.3):

σ∆ =
√

2Dh, (4.6)

where h is the size of a time-step. This is equivalent to taking three independent

random walks in the x, y and s directions, all with the same σ∆. With enough

particles and many timesteps, the distribution will spread diffusively. Notice

that if particle p has diffused a small distance away from particle q, then the

chance that ∆~x points back toward q in the next random walk is exceedingly

small.

In this particular application, there are two difficulties in applying the

random walk approach:
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(1) the coordinates are not globally orthogonal, and

(2) there are walls stopping particles from leaving the pipe.

First, we examine problem (1). Since the s coordinate is only locally or-

thogonal, diffusion in the s direction must be handled in a special way. Our

coordinates x and y are defined in relation to the cross-section. Changing s

changes this cross-section, so the location of the particle in x and y must be

corrected to account for this (in addition to the independent random walks

in these directions). For the torus (λ = 0), the corrections can be computed

easily. For λ > 0, these corrections become more involved. To simplify and

speed our algorithm, we will choose to ignore diffusion in the s direction. Since

the fluid velocity in the s direction is order 1, and D ¿ 1, this assumption

does not introduce much error. A more precise answer involves analyzing the

advection diffusion equation (4.1). Working in the toroidal coordinate system

from Chapter 2, we can split the vector operators into s and cross-sectional

pieces (r, θ). This gives

Ht +
R

R + r sin θ
uHs + vHr +

w

r
Hθ =

D

(

R

R + r sin θ

)2

Hss + D

[

1

r
Hr +

sin θ

R + r sin θ
Hr + Hrr

]

+ D

[

cos θ

r(R + r sin θ)
Hθ +

1

r2
Hθθ

]

.

(4.7)

As before, we let ε = a/R. Since in our final model, we rescale t and s, we

insert that rescaling into this analysis and collect the ε terms

Ht +
2

1 + rε sin θ
uHs +

1

ε
vHr +

w

rε
Hθ =

4εD

(

1

1 + rε sin θ

)2

Hss +
D

ε

[

1

r
Hr + εHr + Hrr

]

+
D

ε

[

cos θ

rR
Hθ +

1

r2
Hθθ

]

.

(4.8)
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Let v′ = εv, w′ = εw, and D′ = D/ε. Then the above becomes

Ht +
2

1 + rε sin θ
uHs + v′Hr +

w′

r
Hθ = 4εD

(

1

1 + rε sin θ

)2

Hss

+ D′

[

1

r
Hr + εHr + Hrr

]

+ D′

[

cos θ

rR
Hθ +

1

r2
Hθθ

]

.

(4.9)

Note that since R À a, ε = a/R is small. Only the s diffusion term is

first-order in ε. All other terms are lower order. Dropping the lower-order

terms results in

Ht + 2uHs + ~u⊥ · ∇H = D′∇2
⊥H, (4.10)

where the perpendicular symbol denotes vector operators operating in the

cross-section only. This equation is a simplified form of the advection-diffusion

equation from before, but it is missing longitudinal diffusion. It is clear from

our scaling analysis that we can safely ignore diffusion in the s direction.

But why not ignore diffusion in the other two directions? From (4.8) we

see that the r and θ terms are both O(1), so quantitative they are impor-

tant. The qualitative answer is that cross-sectional diffusion gives particles

a mechanism by which they can change streamlines (see Section 3.2). Since

each streamline samples different positions in the pipe’s cross-section, chang-

ing streamlines changes a particle’s velocity down the pipe. This results in a

qualitatively different behavior. Section 5.4 has a more developed explanation

of this phenomena.

Now we will solve problem (2). To prevent particles from diffusing outside

of the pipe, we must simulate some sort of boundary interaction. Since the

random walk diffusion is already simulating the effects of particle-on-particle

collisions, the sensible approach is to have particles which try to diffuse outside

of the pipe boundary instead reflect off the pipe wall like a billiards ball off

a table edge (see Figure 4.2). Since in (1) we decided to ignore transverse
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Figure 4.1: The pipe walls reflect particles that attempt to move beyond them during the random
walk.

diffusion, all reflections happen on the unit circle in the cross-section. This

collision should preserve the total distance the particle travels. If the |∆~x| = d,

but the distance in the ∆~x-direction to the wall is d1 < d, then the particle

will reflect and move a distance d2 = d− d1. Should moving a distance d2 take

the particle outside of the pipe again, another reflection is performed, and so

on.

4.3 Composing advection and diffusion: error analysis

Now that we have adapted random-walk diffusion to suit our problem, we must

concern ourselves with combining advection and diffusion. Since diffusion can

change the streamline that a particle inhabits, the order of these operations

has an impact on the outcome of the problem. In general, for each time-step
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h, we need to diffuse the particle for a total time h and advect it for a total

time h. However, these processes are occur simultaneously in equation (4.1),

so in running them independently, we incur some error. Following the result of

Bernoff & Lingevitch [9], we use a split step method to reduce this error. The

advection step is divided into two sub-steps of length h/2 and the diffusion

step is inserted between them. The overall process is advection for a time h/2,

followed by diffusion for a time h, followed by advection for a time h/2. This

method introduces h2 error. We will refer to this error as the separation error.

Two other sources of error are also important. First, Runge-Kutta 4 intro-

duces O(h4) error,which is much smaller than the error incurred by the sepa-

ration of the two processes and therefore unimportant. The second source, the

random-walk approximation to diffusion, requires some analysis. In general,

we will not be concerned with errors in a particle’s position as much as we are

concerned in the error in the width of the s-distribution of particles, charac-

terized by σ (we will use this measurement in Chapter 5 to characterize the

degree of mixing). To analyze the error in this variable, we can approximate

the true distribution width, σ, with the second discrete moment in s of our

particle distribution:

σ2 ≈ 1

N

∑

s2 = q2, (4.11)

where the sum is the sum of the squared s distance traveled by each particle

and N is the total number of particles used. The average (expected) absolute

error in σ2 is

e2
abs = E((q2 − σ2)2). (4.12)

Using the fact that the expected value of the sum is the sum of the expected

values and that that expected value of the sum of s2 is σ, we arrive at

e2
abs =

1

N
[E(s4) − σ4]. (4.13)
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The expected value of the fourth moment of s is the kurtosis. From the results

in Section 1.3, we have that for t À 1/D, the distribution has a gaussian shape.

Since the kurtosis of a gaussian is 3σ4, the absolute error is

eabs = σ2

√

2

N
, (4.14)

which implies that the relative error is

erel =
eabs

σ2
=

√

2

N
. (4.15)

The error from the diffusion simulation depends on the number of particles

used. At least 10000 particles are needed when h = 0.1 (a moderately sized

timestep h) to keep the diffusion error on the same order of magnitude as the

separation error.

4.4 Flow visualization

We can plot the position of each particle in our simulation inside of the unit

disk by projecting down the s-axis. To see the effects of the streamlines for

various λ, we will release 10000 particles in a uniform strip along the y-axis

and set D = 0. Figure (4.2) shows the flow for λ = 0.
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Figure 4.2: A strip of particles is released into a pipe with λ = 0 and evolves into two counter-
rotating spirals shown here projected down the s-axis. The perspective picture shows the 1 − r2

profile in the s direction.
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Figure 4.3: With λ = 0.1, the rotation of the binormal causes the centers of the two spirals shown
in Figure (4.4) to orbit the cross-section.

Here the recirculation in the cross-section draws the strip into two sym-

metric spirals. In Figure (4.3), we repeat the experiment, but this time we

add a moderate amount of torsion to the pipe (λ = 0.1). Notice that in the

three-dimensional projection, the two lobes of the flow field are rotating about

each other.
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Figure 4.4: For large λ (here λ = 1), the spiral pattern breaks down quickly.
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Figure 4.5: Adding a modest amount of diffusion (D = 10−5) introduces some noise into the spiral
pattern, accelerating its decay.

In Figure (4.4), we have set λ = 1, and the dual-spiral structure is quickly

destroyed by the effects of torsion. Finally, we can add diffusion back to our

simulation to look at “dirty spirals”.

Figure (4.5) was run under the same system parameters as Figure (4.3),

but with D = 10−5. Diffusion smudges the flow pattern. The effects of this

are discussed in Section 5.4.



Chapter 5

The effects of torsion on mixing

The helical flow system has two parameters, λ and D. However, we assumed

that D was small through much of our work, so we can only investigate the λ

dimension of our parameter space. Physically, this investigation shows the link

between the amount of torsion in the pipe and the scaling of the various mixing

regimes. A representative experiment in Section 5.1 will serve to introduce

the four regimes observed in the problem. In Section 5.2, we examine the

regimes with no λ dependence and provide explanations for their behavior.

In Section 5.3, we investigate the λ-dependent anomalous regime and provide

numerical solutions for its scaling and timescale as functions of λ. Finally, the

λ dependent Taylor dispersion regime is examined and a relation between λ

and Deff is discussed.

5.1 The four mixing regimes

Using the numerical method discussed in Chapter 4, we will perform an exper-

iment on one million particles with a small dimensionless diffusivity D = 10−4.

To minimize initial transient behavior, the particles will be released in a uni-

form plane filling the pipe at s = 0. Running the simulation for 15000 = 1.5/D

time units, we record σ in the s direction for each time step. Figure (5.1) shows

the results. We notice that there are found different relationships between σ

and t. For D < t < tt, the width σ = t/
√

12, where tt is the turnover time of

the cross-sectional vortices. The effects of the flow in the cross-section are not
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Figure 5.1: This plot of σ versus t reveals three mixing regimes.

yet felt and σ spreads like it would in a straight pipe under Poiseuille flow. We

will call this mixing regime “Anomalous I”, since we observe a non-square root

behavior between t and σ. In this regime, only the first order of the geometry

of the pipe effects the flow. For tt < t < 1/D, another linear mixing regime

appears, with σ = mλt, where mλ depends on the value of λ, ranging between

approximately 0.2141 and 0.2887. This regime, which we will call “Anomalous

II”, is influenced by the geometry of the pipe, but not the diffusivity. Next,

for t > 1/D, Taylor Diffusion begins (cf. Section 1.2) and σ =
√

Deff t, where

Deff ∝ 1/D and depends of λ. In the Taylor regime, both the geometry and

the diffusivity contribute to the mixing.
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5.2 Non λ-dependent mixing regimes

For t < tt, we observe two regimes that do not depend on the geometry param-

eter λ. For t < D, we would expect a diffusive regime. However, the uniform

cross-section release combined with the absence of diffusion in the s direction

results in no noticeable change in σ. If s-directional diffusion were added back,

we would expect to see σ =
√

Dt.

The behavior of the other non-λ dependent regime can be calculated. In

this case, the particles are governed by Bizet flow:

ṡ = 1 − r2, (5.1)

and

ψ =
r2

2
. (5.2)

In this regime, the random fluctuations of particle positions is on the order of

D. Let x̂ = x + D represent a particle that has randomly moved a distance

D from its old location. We can evaluate the error in the particle’s s position

arising from the assumption that we may neglect the effects of diffusion in this

mixing regime. We have

eD = |2xD + D2|. (5.3)

Thus the error is on the order of D. With the assumption that D is smaller

than our simulation error, we may neglect the effects of diffusion. We can now

calculate the s distribution of particles simply from (5.1) and (5.2). We want

to find the slope of σ(t) and we proceed by averaging the concentration on

the streamlines. Since we are neglecting diffusion, there is no mechanism to

transport particles from their original streamline at time t = 0 to any other

streamline. Thus, we assume that all of the particles on a given streamline

move at the average velocity of that streamline. Since all of the streamlines

of ψ are circles, we have that the velocity of a streamline, w(r) = 1 − r2. In
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general,from statistics we have that

σ2 = 〈w2t2〉 − 〈wt〉2,

where 〈·〉 is the expected value. Since in the Anomalous I regime, w does not

truly depend on time, we have

σ2 = m2t2 = (〈w2〉 − 〈w〉2)t2. (5.4)

We can adapt this to our problem by writing

m2 =
1

π

∫ ψ+

ψ−

w2dψ − 1

π

(∫ ψ+

ψ−

wdψ

)2

, (5.5)

where ψ− and ψ+ are the minimum and maximum, respectively, of the the

stream function. For this problem,

m2 =
1

π

∫ 1

0

(1 − r2)2dψ − 1

π

(∫ 1

0

(1 − r2)2dψ

)2

.

Letting dψ = 2πrdr, ie the arc-length of a streamline times a differential radius

amount, transforms the integral into an area integral

m2 = 2

∫ 1

0

(1 − r2)2rdr − 1/4.

This evaluates to m2 = 1/12, accounting for the behavior observed in the

example above. This kind of mixing behavior is well-known in straight pipes.

5.3 λ-dependent anomalous mixing

In this intermediate time mixing regime, we observe deviations from the 1/
√

12

slope observed above. A graph of σ versus t for various values of λ (see Figure

5.2) demonstrates that there is a relationship between λ and the deviation of

Anomalous II from Anomalous I. Notice first that for large λ, there is little

difference between Anomalous I and Anomalous II. If we examine the Poincaré
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Figure 5.2: Plotting σ versus t for various values of λ reveals that the slope in the Anomalous II
regime as well as the transition time between regimes depends of λ.

map streamlines in (3.11), we see that for large enough values of λ, the stream

function has only r dependence and only models the rotation of the binor-

mal that occurs in our helical coordinate system. Thus, for large λ, the pipe

geometry is asymptotic to a straight pipe.

We examine two phenomena here: the dependence of tt on λ and the de-

pendence of the slope of Anomalous II on λ. Experimentally we obtain the

relationship shown in Figure (5.3) between tt and λ. Transition time tt was

determined by the first minimum in the second derivative. Since the transition

from Anomalous I to Anomalous II is a transition between two linear pieces, we

expect to see a second derivative plot that is zero except where nonlinear be-

havior occurs. Decreasing λ decreases the transition time. Figure (5.4) shows

the relationship between the slope, mλ, and λ. Increasing λ increases mλ,

implying that the cross-sectional mixing is slowing the longitudinal mixing.
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Figure 5.3: The transition time tt from the Anomalous I to the Anomalous II regime depends on λ

as shown above.
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Figure 5.4: The Anomalous II slope mλ has a direct relationship with λ. Large values of λ represent
pipes that are nearly straight.
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5.4 Taylor Dispersion dependence on torsion
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Figure 5.5: The Taylor diffusion constant Deff shrinks as λ shrinks, implying that toroidal pipes mix
slower at large t.

For t > 1/D we observe a Taylor Dispersion regime. The Deff is larger for

larger λ. Figure (5.5) shows this relationship. Since Deff is proportional to

1/D, we wish to find k = k(λ) such that Deff = k/D. From the literature, it

is known that for straight pipes (λ À 1), k = 1/48 [8], and for toroidal pipes

(λ = 0), k is smaller. Our observed values fall within this range.



Chapter 6

Conclusion

This thesis explored the effects of helical geometry on fluid mixing. We de-

rived the standard ODE model of flow in toroidal pipes (Dean flow) in Chapter

2. By changing coordinates and demonstrating that torsion was a second or-

der effect in the asymptotic expansion, we extended Dean flow to cover helical

pipes. In Chapter 3, we found a stream function for the helical flow based on

the toroidal flow function. With these equations, we constructed a numerical

Monte Carlo simulation to measure mixing in Chapter 4. Errors in this com-

putation were examined based on splitting apart the advective and diffusive

process in the governing equations and on the stability of the ODE integrator.

6.1 Results

From this simulation, we observed in Chapter 5 four different scaling regimes

of the longitudinal mixing, two of which were dependent on the geometry

parameter λ. For very short times (t < D), we observed a diffusive regime,

where the effects of advection were not yet felt locally and σ ≈
√

Dt. For

t < tt (where tt is the turnover time of the helical equations), we observe a

ballistic or “anomalous” regime characteristic of straight-pipe mixing with a

slope m = sqrt1/12. For tt < t < 1/D, a second anomalous ballistic regime

occurs, where the slope m is a function of λ. Finally, for t À 1/D, we observe

Taylor diffusion, where the effective diffusion constant, Deff , depends on λ.

Analysis showed that the slope of the second anomalous regime and the value
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of Deff are larger when λ is larger. Note that a very large λ value corresponds

to a nearly straight pipe.

6.2 Future work

While this thesis has investigated the anomalous mixing regimes thoroughly,

the Taylor regime deserves a more careful study. The relationship between the

Taylor diffusion constant k and λ still needs to be established. This problem

will require exploring the parameter space in both λ and D. However, for large

λ and small D, this becomes very difficult to compute, as small timesteps are

needed to resolve the fast coordinate rotation and long times are needed to

observe Taylor Diffusion.

Using the method outlined in Section 5.2, one could extend the analysis to

describe the Anomalous II mixing regime. In this case, the s-velocity would be

a function of streamline and would be tricky to calculate, but the integration

to find m would be straightforward.

The extension to pipes where λ is a function of s would be another good

area of study. It is known (Germano [4]) that torsion can be a function of

arc length without causing a first order change in the flow equations. Some

restraint on curvature’s relationship could suppress first-order variations from

taking κ = κ(s).

Physically, allowing particles near the boundary to escape with some small

probability would change this problem from a mixing simulation to a heat-

exchange simulation. Temperature could be measured by summing the number

of “heat particles” contained in a given region and averaging over space. Since

heat exchange depends more on mixing in the cross-section than longitudinally,

the mixing properties of nearly toroidal helices could provide a no-moving-parts

efficient heat exchange system.
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