back to the math tutorial index back to the math tutorial index

Convergence Tests for Infinite Series

In this tutorial, we review some of the most common tests for the convergence of an infinite series $$ \sum_{k=0}^{\infty} a_k = a_0 + a_1 + a_2 + \cdots $$ The proofs or these tests are interesting, so we urge you to look them up in your calculus text.

Let \begin{eqnarray*} s_0 & = & a_0 \\ s_1 & = & a_1 \\ & \vdots & \\ s_n & = & \sum_{k=0}^{n} a_k \\ & \vdots & \end{eqnarray*} If the sequence $\{ s_n \}$ of partial sums converges to a limit $L$, then the series is said to converge to the sum $L$ and we write
$\qquad$ $$ \sum_{k=0}^{\infty}a_k = L. $$ $\qquad\qquad$
For $j \ge 0$, $\sum\limits^{\infty}_{k=0} a_k$ converges if and only if $\sum\limits_{k=j}^{\infty} a_k$ converges, so in discussing convergence we often just write $\sum a_k$.

Example

Consider the geometric series $$ \sum_{k=0}^{\infty} x^k. $$ The $n^{th}$ partial sum is $$ s_n = 1 + x + x^{2} + \cdots + x^{n}. $$ Multiplying both sides by $x$, $$ xs_n = x + x^{2} + x^{3} + \cdots + x^{n+1}. $$ Subtracting the second equation from the first, $$ (1-x)s_n = 1-x^{n+1}, $$ so for $x \not= 1$, $$ s_n = \frac{1-x^{n+1}}{1-x}. $$ For $|x| < 1$, $$ \lim_{n \rightarrow \infty} s_n = \frac{1}{1-x}. $$ It is easy to see that $\sum\limits_{k=0}^{\infty}x^{k}$ diverges for $|x| \ge 1$. Thus $\sum\limits_{k=0}^{\infty}x^{k} = \frac{1}{1-x}$ for $|x| < 1$ and diverges for $|x| \ge 1$.

Divergence Test

If $\lim\limits_{k \rightarrow \infty} a_k \not= 0$, then $\sum\limits_{k=0}^{\infty}a_k$ diverges.

Example

The series $\sum\limits_{k=0}^{\infty}\frac{k}{2k+1}$ diverges, since $\lim\limits_{k \rightarrow \infty} \frac{k}{2k+1} = 1/2 \not= 0$.

Integral Test

Let $f(x)$ be continuous, decreasing, and positive for $x \ge 1$. Then $\sum\limits_{k=1}^{\infty}f(k)$ converges if and only if $\int\limits_{1}^{\infty} f(x)dx$ converges.

Example

Consider the p-series $$ \sum_{k=1}^{\infty}\frac{1}{k^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \cdots $$ Since $$ \int_{1}^{\infty}\frac{1}{x^{p}}dx = \left\{\begin{array}{l@{,\quad}l} \left.\frac{1}{1-p}x^{1-p}\right|_{1}^{\infty} & p>1 \\ \left.\ln |x| \right|_{1}^{\infty} & p=1 \\ \left.\frac{1}{1-p}x^{1-p}\right|_{1}^{\infty} & 0 < p < 1 \end{array} \right. = \left\{ \begin{array}{c} \frac{1}{1-p}\\ \infty \\ \infty, \end{array}\right. $$ the series converges for $p>1$ and diverges for $0 < p \le 1$. $\qquad$
The divergent p-series $$ \sum_{k=1}^{\infty}\frac{1}{k} $$ with $p=1$ is called the Harmonic Series.

Comparison Test

Let $\sum a_k$ and $\sum b_k$ be series with non-negative terms. If $a_k \le b_k$ for all $k$ sufficiently large, then

  1. If $\sum b_k$ converges, then $\sum a_k$ also converges.
  2. If $\sum a_k$ diverges, then $\sum b_k$ also diverges.
Informally, if the "larger" series converges, so does the "smaller." If the "smaller" series divers, so does the "larger."

Examples

  • Since $\sum\limits_{k=1}^{\infty}\frac{1}{k^2}$ converges, so does $\sum\limits_{k=1}^{\infty}\frac{1}{k^2 + 3}$.
  • Since $\sum\limits_{k=1}^{\infty}\frac{1}{k}$ diverges, so does $\sum\limits_{k=1}^{\infty}\frac{1}{\ln |k+1|}$.
$\qquad\qquad$
$\frac{1}{k^2 +3} < \frac{1}{k^2}$ for all $k$.
$\frac{1}{\ln |k+1|} > \frac{1}{k}$ for $k \ge 2$.

Limit Comparison Test

Let $\sum a_k$ and $\sum b_k$ be series with positive terms. If $$ \lim_{k \rightarrow \infty}\frac{a_k}{b_k} = L $$ where $0 < L < \infty$ then $\sum a_k$ and $\sum b_k$ either both converge or both diverge.

Example

The series $\sum\limits_{k=1}^{\infty}\frac{k^2-1}{5k^3}$ diverges, since $\sum\limits_{k=1}^{\infty}\frac{1}{k}$ diverges and $$ \lim_{k \rightarrow \infty} \frac{\frac{k^2-1}{5k^3}}{\frac{1}{k}} = \lim_{k \rightarrow \infty} \frac{k^2-1}{5k^2} = \frac{1}{5}. $$

Ratio Test

Let $\sum a_k$ be a series with positive terms and suppose that $$ \lim_{k \rightarrow \infty}\frac{a_{k+1}}{a_k} = L. $$

  1. If $L < 1$, then $\sum a_k$ converges.
  2. If $L > 1$, then $\sum a_k$ diverges.
  3. If $L = 1$, then the test is inconclusive.

Example

The series $\sum\limits_{k=1}^{\infty}\frac{1}{k!}$ converges, since $$ \lim_{k \rightarrow \infty}\frac{\frac{1}{(k+1)!}}{\frac{1}{k!}} = \lim_{k \rightarrow \infty}\frac{1}{k+1} = 0. $$

Root Test

Let $\sum a_k$ be a series with non-negative terms and suppose that $$ \lim_{k \rightarrow \infty} (a_k)^{\frac{1}{k}} = L. $$

  1. If $L < 1$, then $\sum a_k$ converges.
  2. If $L > 1$, then $\sum a_k$ diverges.
  3. If $L = 1$, then the test is inconclusive.

Example

The series $\sum\limits_{k=0}^{\infty} \left( \frac{k}{2k+1} \right)^{k}$ converges, since $$ \lim_{k \rightarrow \infty} \left[\left(\frac{k}{2k+1}\right)^{k}\right]^{\frac{1}{k}} = \lim_{k \rightarrow \infty} \frac{k}{2k+1} = \frac{1}{2}. $$

Alternating Series Test

Consider the alternating series $$ \sum_{k=0}^{\infty}(-1)^{k}a_k $$ where $a_k > 0$ for all $k \ge 0$.

If $a_{k+1} < a_k$ for all $k$ and $\lim\limits a_k = 0$, then $\sum\limits_{k=0}^{\infty}(-1)^{k}a_k$ converges.

Example

The series $\sum\limits_{k=0}^{\infty} \frac{(-1)^{k}}{k+1}$ converges, since $\frac{1}{(k+1) + 1} < \frac{1}{k+1}$ and $\lim\limits_{k \rightarrow \infty}\frac{1}{k+1} =0$. This series is conditionally convergent, rather than absolutely convergent, since $\sum\limits_{k=0}^{\infty}\left|\frac{(-1)^{k}}{k+1}\right| = \sum\limits_{k=0}^{\infty}\frac{1}{k+1}$ diverges.


Key Concepts

The infinite series $$ \sum_{k=0}^{\infty}a_k $$ converges if the sequence of partial sums converges and diverges otherwise.

For a particular series, one or more of the common convergence tests may be most convenient to apply.