|
Quotient Rule for Derivatives
Suppose we are working with a function $h(x)$ that is a ratio of two
functions $f(x)$ and $g(x)$.
How is the derivative of $h(x)$ related to $f(x)$, $g(x)$, and their derivatives?
Quotient Rule
Let $f$ and $g$ be differentiable at $x$ with $g(x)\neq 0$. Then
$f/g$ is differentiable at $x$ and
\[\left[\frac{f(x)}{g(x)}\right]'=\frac{g(x)f'(x)-f(x)g'(x)}{[g(x)]^2}.\]
Proof
Examples
- If $\displaystyle f(x)=\frac{2x+1}{x-3}$, then
\begin{eqnarray*}
f'(x)&=&\frac{(x-3)\frac{d}{dx}[2x+1]-(2x+1)\frac{d}{dx}[x-3]}{[x-3]^2}\\
&=& \frac{(x-3)(2)-(2x+1)(1)}{(x-3)^2}\\
&=& -\frac{7}{(x-3)^2}.
\end{eqnarray*}
- If $\displaystyle f(x)=\tan x=\frac{\sin x}{\cos x}$, then
\begin{eqnarray*}
f'(x)&=&\frac{\cos (x)\frac{d}{dx}[\sin (x)]-\sin (x)\frac{d}{dx}
[\cos x]}{[\cos x ]^2}\\
&=& \frac{\cos^2 (x)+\sin^2 (x)}{\cos^2 (x)}\\
&=& \frac{1}{\cos^2 (x)}\\
&=& \sec^2 (x),
\end{eqnarray*}
verifying the familiar differentiation formula for $\tan (x)$.
- If $\displaystyle f(x)=\frac{1}{g(x)}$, then
\begin{eqnarray*}
f'(x)=\left[\frac{1}{g(x)}\right]'&=&\frac{g(x)\frac{d}{dx}[1]-(1)g'(x)}
{[g(x)]^2}\\
&=& \frac{g(x)(0)-(1)g'(x)}{[g(x)]^2}\\
&=& -\frac{g'(x)}{[g(x)]^2}.
\end{eqnarray*}
For example, $\displaystyle
\frac{d}{dx}[x^{-4}]=\frac{d}{dx}\left[\frac{1}{x^4}\right]
=-\frac{\frac{d}{dx}[x^4]}{[x^4]^2}=-\frac{4x^3}{x^8}=-\frac{4}{x^5}=-4x^{-5}$.
Key Concepts
Quotient Rule
Let $f$ and $g$ be differentiable at $x$ with $g(x) \neq 0$. Then $f/g$ is
differentiable at $x$ and
$$\left[\frac{f(x)}{g(x)}\right]' = \frac{g(x)f'(x)-f(x)g'(x)}{\left[g(x)\right]^2}.$$
|