Math Fun Facts!
hosted by the Harvey Mudd College Math Department created, authored and ©1999-2010 by Francis Su
Subscribe to our RSS feed   or follow us on Twitter.
Get a random Fun Fact!
or
No subject limitations
Search only in selected subjects
    Algebra
    Calculus or Analysis
    Combinatorics
    Geometry
    Number Theory
    Probability
    Topology
    Other subjects
  Select Difficulty  
Enter keywords 

  The Math Fun Facts App!
 
  List All : List Recent : List Popular
  About Math Fun Facts / How to Use
  Contributors / Fun Facts Home
© 1999-2010 by Francis Edward Su
All rights reserved.

From the Fun Fact files, here is a Fun Fact at the Easy level:

Birthday Problem

How many people do you need in a group to ensure at least a 50 percent probability that 2 people in the group share a birthday?

Let's take a show of hands. How many people think 30 people is enough? 60? 90? 180? 360?

Surprisingly, the answer is only 23 people to have at least a 50 percent chance of a match. This goes up to 70 percent for 30 people, 90 percent for 41 people, 95 percent for 47 people. With 57 people there is better than a 99 percent chance of a birthday match!

Presentation Suggestions:
If you have a large class, it is fun to try to take a poll of birthdays: have people call out their birthdays. But of course, whether or not you have a match proves nothing...

The Math Behind the Fact:
Most people find this result surprising because they are tempted to calculate the probability of a birthday match with one particular person. But the calculation should be done over all pairs of people. Here is a trick that makes the calculation easier.

To calculate the probability of a match, calculate the probability of no match and subtract from 1. But the probability of no match among n people is just

(365/365)(364/365)(363/365)(362/365)...((366-n)/365),
where the k-th term in the product arises from considering the probability that the k-th person in the group doesn't have a birthday match with the (k-1) people before her.

If you want to do this calculation quickly, you can use an approximation: note that for i much smaller than 365, the term (1-i/365) can be approximated by EXP(-i/365). Hence, for n much smaller than 365, the probability of no match is close to


EXP( - SUMi=1 to (n-1) i/365) = EXP( - n(n-1)/(2*365)).

When n=23, this evaluates to 0.499998 for the probability of no match. The probability of at least one match is thus 1 minus this quantity.

For still more fun, if you know some probability: to find the probability that in a given set of n people there are exactly M matches, you can use a Poisson approximation. The Poisson distribution is usually used to model a random variable that counts a number of "rare events", each independent and identically distributed and with average frequency lambda.

Here, the probability of a match in a given pair is 1/365. The matches can be considered to be approximately independent. The frequency lambda is the product of the number of pairs times the probability of a match in a pair: (n choose 2)/365. Then the approximate probability that there are exactly M matches is:

(lambda)M * EXP(-lambda) / M!
which gives the same formula as above when M=0 and n=-365.

How to Cite this Page:
Su, Francis E., et al. "Birthday Problem." Math Fun Facts. <http://www.math.hmc.edu/funfacts>.

Keywords:    demonstration
Subjects:    probability
Level:    Easy
Fun Fact suggested by:   Francis Su
Suggestions? Use this form.
4.46
 
current
rating
Click to rate this Fun Fact...
    *   Awesome! I totally dig it!
    *   Fun enough to tell a friend!
    *   Mildly interesting
    *   Not really noteworthy
and see the most popular Facts!
Get the Math Fun Facts
iPhone App!

Want another Math Fun Fact?

For more fun, tour the Mathematics Department at Harvey Mudd College!