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1.1. Outline of Lecture

• Laplace’s Equation and Harmonic Functions
• The Mean Value Property
• Dirichlet’s Principle
• Minimal Surfaces

1.2. Laplace’s Equation and Harmonic Functions

Let Ω be an open subset of R
n = {(x1, . . . , xn) | xi ∈ R} and suppose

u : Ω → R is given. Recall that the gradient of u is defined as

∇u =

(

∂u

∂x1

, . . . ,
∂u

∂xn

)

.

The Laplacian of u, denoted ∆u or ∇2u is defined as

∆u = div (∇u) = ux1x1 + · · ·+ uxnxn
.

Laplace’s equation on the domain Ω is

∆u = 0, (x1, . . . , xn) ∈ Ω.

Solutions to Laplace’s equation on Ω are called harmonic func-

tions on Ω.
In one dimension harmonic functions are linear. Things are not so

simple in higher dimensions. Let’s consider some examples.
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(a) Steady-state Fluid Flow. In fluid mechanics one is inter-
ested in the velocity field ~v = ~v(x, y, z, t) of a given fluid. If the
flow is steady, then the velocity field is independent of time t.
If the flow is irrotational (i.e., curl ~v = 0), then ~v = −∇u for
some scalar function u (called the velocity potential). If the
flow is incompressible (e.g., constant density), then div ~v = 0.
But now div ~v = div(−∇u). Consequently ∆u = div∇u = 0.

Thus the velocity potential for an incompressible irrota-
tional fluid is harmonic. This is a very important result in the
theory of fluid dynamics.

(b) Electrostatics. Maxwell’s equations govern the interaction
between electric and magnetic fields. In the static case the
equations for the electric field and magnetic field decouple and
the electric field ~E is governed by the two equations

curl ~E = ~0 div ~E = 4πρ,

where ρ is the charge density. Since ~E is curl free it follows
that ~E = −∇Φ for some scalar function Φ (called the electric

potential). Substituting this into the second equation yields
∆Φ = −4πρ. Thus, in any charge free region ρ = 0 and
∆Φ = 0.

In words, the electric potential in a charge free region is
harmonic. Thus one can find the electric field by solving the
PDE and taking the gradient of the solution.

(c) Analytic Functions. Let z = x + iy. An analytic function

f(z) = u(x, y) + i v(x, y)

satisifes the Cauchy Riemann equations:

ux = vy uy = −vx.

It follows that uxx = (vy)x = (vx)y = (−uy)y = −uyy or

uxx + uyy = 0.

Similarly, ∆v = 0. Thus the real and imaginary parts of an
analytic function are harmonic! This gives us an endless source
of interesting harmonic functions. For example,

• f(z) = z2 = (x + iy)2 = (x2 − y2) + i(2xy). Thus x2 − y2

and 2xy are harmonic on R
2.

• f(z) = zn = (reiθ)n = rneinθ = rn(cos nθ + i sin nθ) =
rn cos nθ + i rn sin nθ. Thus rn cos nθ and rn sin nθ are
harmonic. What are these functions in terms of x and y?
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• f(z) = ln z = ln |z|+i Arg(z) = ln
√

x2 + y2+i arctan(y/x).

Thus ln
√

x2 + y2 and tan−1(y/x) are harmonic. For what
regions are they harmonic?

• (more exotic) f(z) = e−z2

z2 + z4 . It’s not obvious what the
real and imaginary parts are but we can readily visualize
them using Maple.

Figure 1. The real part of f(z) = e−z2

z2 + z4.

See the Maple worksheet for more plots of these surfaces. Notice
that they all have a sense of flatness to them. They bend and curve,
but in a curious way. Notice all the local maxima or minima occur on
the boundary of the surface. There’s another situation where you may
have observed similar ”flat” surfaces: soap films.

1.3. As Flat as Possible: Take 1

The Mean Value Property

Question Suppose g : ∂B(0, 1) → R is given and u : B(0, 1) → R is
a surface that agrees with g on ∂Ω and is as flat as possible. What
should the value u(0, 0) be?
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One Answer: u(0, 0) =
1

2π

∫ 2π

0

g(θ) dθ.

That is u should be the average of all the boundary data.

More generally, suppose Ω is an open subset of R
2, g : ∂Ω → R is

given, and u : Ω → R satisfies u = g on ∂Ω and u is as flat as possible.

Can we determine u?
Motivated by the first question, let’s suppose

(1.1) u(P ) =
1

2πr

∫

∂B(P,r)

u ds,

for each P ∈ Ω and B(P, r) ⊂ Ω. In words, suppose u at P is the
average of u over any circle centered at P . Could such a function exist?

Let P = (x0, y0) and consider the following figure:

Then

u(x0, y0) =
1

2πr

∫

∂B(P,r)

u(x, y) ds

=
1

2πr

∫ 2π

0

u(x0 + r cos θ, y0 + r sin θ) rdθ

=
1

2π

∫ 2π

0

u(x0 + r cos θ, y0 + r sin θ) dθ.

Notice that the left-hand side is constant while the right-hand side
is a function of r. We now exploit this by taking the derivative with
respect to r (remembering the chain rule):
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0 =
1

2π

∫ 2π

0

ux cos θ + uy sin θ dθ

=
1

2πr

∫ 2π

0

(ux cos θ + uy sin θ) rdθ

=
1

2πr

∫

∂B(P,r)

∇u · ν ds

=
1

2πr

∫

B(P,r)

div (∇u) dy dx

=
1

2πr

∫

B(P,r)

∆u dy dx.

The second to last equality follows from the divergence theorem.

Aha! If (1.1) holds then

0 =

∫

B(P,r)

∆u dy dx

for all r > 0 with B(P, r) ⊂ Ω. If this holds for all P ∈ Ω, then

∆u = 0, for each P ∈ Ω.

We have established the following theorem:

Theorem 1 (Mean-Value Property)
The function u is harmonic if and only if

u(P ) =
1

2πr

∫

∂B(P,r)

u ds =
1

πr2

∫

B(P,r)

u dxdy,

for each P ∈ Ω and B(P, r) ⊂ Ω.

This theorem answers our question about u. To find the function u
that equals g on ∂Ω and is “as flat as possible”(in the sense we chose)
we can solve the boundary value problem:

(1.2)

{

∆u = 0, (x, y) ∈ Ω,

u = g, (x, y) ∈ ∂Ω.

This explains the apparent “flatness”of the harmonic surfaces we’ve
looked at. They can bend but only in such a way as to always preserve
the mean value property.
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This is a rather curious way to derive a PDE. Starting from the
pointwise assumption that u is always the average of its neighboring
values we arrived at the conclusion that u must be harmonic! There
is nothing special about 2D here, and in fact, the same result holds in
R

n, now taking the average over a sphere or hypersphere (n ≥ 4).

1.4. As Flat As Possible: Take 2

Dirichlet’s Principle

Let’s consider another approach to the question of finding a surface u
that agrees with g on ∂Ω and is as flat as possible. Rather than define
a pointwise constraint, let’s assign a numerical measure of flatness to
each surface u that agrees with g on ∂Ω:

E[u] =
1

2

∫

Ω

|∇u|2 dy dx.

This integral is often referred to as the Dirichlet energy integral,
in analogy with the kinetic energy 1

2
mv2. At this point it is a some-

what arbitrary choice, you could choose your own numerical measure
and perform similar computations.

Notice that if E[u] = 0, then |∇u| = 0 in Ω, in which case u is
constant, quite flat. On the other hand, if g is nonconstant and u = g
on ∂Ω then E[u] > 0 and we can ask what is true for functions u that
minimizes this quantity?

Let u minimize E over

A = {w : Ω → R : w = g on ∂Ω}.

For φ smooth, with φ = 0 on ∂Ω notice that u + φ ∈ A and

E[u] ≤ E[u + φ].

In fact, for each such φ we can define a map iφ : R → R

iφ(ε) = E[u + εφ].

Then u minimizes E implies that the function iφ has a minimum
at ε = 0, or i′φ(0) = 0. But iφ : R → R is an honest single variable
function whose derivative we can compute:
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i(ε) = E[u + εφ]

=
1

2

∫

Ω

|∇u + ε∇φ|2 dV

=
1

2

∫

Ω

(∇u + ε∇φ) · (∇u + ε∇φ) dV

=
1

2

∫

Ω

|∇u|2 + 2ε∇u · ∇φ + ε2|∇φ|2 dV.

Thus

i′(ε) =

∫

Ω

∇u · ∇φ dV + ε

∫

Ω

|∇φ|2 dV,

or, letting ε = 0 yields,

0 =

∫

Ω

∇u · ∇φ dV =

∫

Ω

(∆u)φ dV.

Thus, u minimizes E over A only if
∫

Ω

(∆u)φ dV = 0 for all φ.

Since φ is arbitrary, it follows that

∆u = 0 (x, y) ∈ Ω.

We have shown that harmonic functions minimize the Dirichlet en-
ergy. This is known as Dirichlet’s principle. Notice that two com-
pletely different approaches have led to the same PDE. This second
method is known as the Calculus of Variations and is a very active
area of current research. Choosing a different numerical measure E
will yield a different PDE.

1.5. Minimal Surfaces & Harmonic Functions

Are the soap film surfaces harmonic functions? A soap surface is flat
since surface tension acts to minimize the surface area. Thus they
minimize

(1.3) SA[u] =

∫

Ω

√

1 + |∇u|2 dxdy,

over all functions that agree with g on ∂Ω.
Using the Taylor approximation

√
1 + x ≈ 1+ x

2
we can rewrite this

as

SA[u] =

∫

Ω

√

1 + |∇u|2 dxdy ≈
∫

Ω

1 +
1

2
|∇u|2 dxdy.
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For purposes of minimizing the latter integral we can ignore the con-
stant term. Thus we see that for |∇u|2 small, minimizing the surface
area is equivalent to minimizing the Dirichlet energy integral! Thus
soap surfaces are not harmonic, but close.

Performing the computations of the last section with the surface
area integral (1.3) yields the minimal surface equation:

(1.4)







div

(

∇u√
1+|∇u|2

)

= 0, in Ω,

u = g, on ∂Ω.

As an exercise, verify that in two two-dimensional case this can be
expressed as

(1.5) (1 + u2
y)uxx + 2uxuyuxy + (1 + u2

x)uyy = 0.

1.6. Challenge Problems for Lecture 3

Problem 1. Find the harmonic functions defined by the real and imag-
inary part of

(a) f(z) = z3

(b) f(z) = ez

Problem 2. Show that in the two dimensional case the minimal surface
equation (1.4) is the same as (1.5).

Problem 3. Recall the mean value property states that u is harmonic
if and only if

u(P ) =
1

2πr

∫

∂B(P,r)

u ds =
1

πr2

∫

B(P,r)

u dxdy

for each P ∈ Ω and B(P, r) ⊂ Ω. In class we proved the first equality.
Prove the second equality holds by expressing the integral over B(P, r)
in terms of ∂B(P, s) where 0 ≤ s ≤ r.

Problem 4. Use the Mean Value Property to prove the Maximum
Principle:

Theorem Let Ω be a bounded domain. If u is harmonic on Ω then

(a) max
Ω

u = max
∂Ω

u.

(b) If Ω is connected and there exists ~x0 ∈ Ω such that

u( ~x0) = max
∂Ω

u,

then u is constant.
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This second statement is known as the Strong Maximum Principle

and is a very important tool in the theory of PDE. First prove part
(b), then note that (a) follows from (b).

Problem 5. Use the Maximum Principle to prove that the Dirichlet
problem

(1.6)

{

∆u = f, (x, y) ∈ Ω,

u = g, (x, y) ∈ ∂Ω,

has at most one solution. Hint: Consider the difference of two solutions.


