American Mathematical Monthly (11/99)

Problem 10762 [1999,864]. Let $x_{1}=1$ and for $m \geq 1$ let $x_{m+1}=(m+3 / 2)^{-1} \sum_{k=1}^{m} x_{k} x_{m+1-k}$. Evaluate $\lim _{m \rightarrow \infty} x_{m} / x_{m+1}$. Solution by Andrew Bernoff and Karl Mahlburg (student), Harvey Mudd College, Claremont, CA. Define a generating function $f(z)=\sum_{n=1}^{\infty} x_{n} z^{n}$. Multiplying both sides of the given sum by $(m+3 / 2) z^{m+1}$ and summing over positive m leads to a DE for $f(z)$,

$$
z f_{z}+\frac{1}{2} f-\frac{3}{2} z=f^{2} .
$$

Our generating function is a solution to this DE which is analytic in a neighborhood of the origin, where $f(0)=0$.

Making the substitution $s=\sqrt{z}, f(z)=\frac{1}{2}+s g(s)$ yields a separable DE, $g_{s}=2 g^{2}+3$. Selecting the appropriate solution for g yields the solution for f,

$$
f(z)=\frac{1}{2}[1-\sqrt{6 z} \cot (\sqrt{6 z})]
$$

which is meromorphic, has a removeable singularity at the origin and poles at $N \pi / \sqrt{6}$ for N a non-zero integer. Noting that x_{m} is positive, we see that the required limit is the radius of convergence of the power series for $f(z)$ at $z=0$, given by the distance to the nearest pole in the complex plane, that is $\lim _{m \rightarrow \infty} x_{m} / x_{m+1}=\pi / \sqrt{6}$.

