MATH 25B FALL 2010: CALCULUS LECTURE 8

DAGAN KARP

ABSTRACT. In this note, we explore and prove both parts of the fundamental theorem of calculus.

1. FTOC

Now that we have defined the definite integral of a function from on a closed interval, a natural question to ask is: For which functions does this integral exist? That is, which functions are integrable?

Theorem 1. Every continuous function is integrable.

Remark 2. Many discontinuous functions are also integrable!

Example 3. Let f be given by

$$f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$$

Here, for every partition P of [a, b], L(f, P) = 0 and U(f, P) = b - a.

2. FUNDAMENTAL THEOREM OF CALCULUS

Recall from your previous studies of calculus, the area A under the graph of the (non-negative) function y = f(x) can be computed via anti-derivation. Specifically, find any function F(x) such that F'(x) = f(x). Then the area A is F(b) - F(a). Why the *%&\$ does this work?

Example 4. To compute $\int_1^3 x^2 dx$, we note that $F(x) = x^3/3$ is an antiderivative, and thus A = F(3) - F(1) = 27/3 - 1/3 - 26/3. This is denoted

$$A = \int_{1}^{3} x^{2} dx = \frac{x^{3}}{x} \Big|_{1}^{3} = \frac{26}{3}$$

Let's try to understand why this works? Let f(t) be any integrable function and fix the number $a \in \mathbb{R}$. Define the *area function* by

$$A(x) = \int_{0}^{x} f(t)dt$$

which gives us the area under the curve from a to x. Note that A(a) = 0.

Proposition 5. If f(t) is continuous, then A(x) is differentiable.

Date: November 4, 2010.

Proof.

$$\frac{\mathrm{d}}{\mathrm{d}x}A(x) = \lim_{h \to 0} \frac{A(x+h) - A(x)}{h}.$$

Note that A(x + h) - A(x) is the area under the graph of f from x to x + h. Define

$$M_h = Max\{f(t) : t \in [x, x+h]\}$$

$$m_h = min\{f(t) : t \in [x, x+h]\}$$

Then

$$m_h \cdot h \leq A(x+h) - A(x) \leq M_h \cdot h$$

and therefore

$$m_h \leqslant \frac{A(x+h) - A(x)}{h} \leqslant M_h$$

and hence

$$\lim_{h\to 0} m_h \leqslant \lim_{h\to 0} \frac{A(x+h)-A(x)}{h} \leqslant \lim_{h\to 0} M_h$$

Now, since f is continuous, we have

$$\lim_{h\to 0} m_h = f(x) = \lim_{h\to 0} M_h$$

Thus, we conclude

$$A'(x) = \lim_{h \to 0} \frac{A(x+h) - A(x)}{h} = f(x)$$

We have just proved FTOC I.

Theorem 6 (Fundamental Theorem of Calculus I). *If* f *is continuous on* [a, b], *then*

$$A(x) = \int_{a}^{x} f(t)dt$$

is differentiable and

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\int_{a}^{x}f(t)\mathrm{d}t\right)=f(x).$$

The second FTOC returns to our original question.

Theorem 7 (Fundamental Theorem of Calculus II). *If* f *is continuous of* [a, b] *and* f(x) = F'(x) *for some function* F, *then*

$$\int_{a}^{b} f(t)dt = F(b) - F(a).$$

Proof. Let $A(x) = \int_a^x f(t)dt$. Then our goal is to show that A(b) = F(b) - F(a). From FTOC I, we have

$$A'(x) = f(x) = F'(x),$$

where the last equality is by hypothesis. So, by corollary of MVT,

$$A(x) = F(x) + C$$

for some constant C. To determine C, note that

$$0 = A(\alpha) = F(\alpha) + C \Rightarrow C = -F(\alpha).$$

Therefore

$$A(x) = F(x) - F(a)$$

and thus

$$A(b) = F(b) - F(a).$$

Example 8.

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{3}^{x} \cos^{7} t \, \mathrm{d}t = \cos^{7} x$$

Example 9.

$$\int_{\alpha}^{b} x^{n} dx = \frac{x^{n+1}}{n+1} |_{\alpha}^{b} = \frac{b^{n+1} - \alpha^{n+1}}{n+1}.$$

Note that this works for $n \neq -1$. So what can we say about this exception? That is, can we find a function whose derivative is 1/x?

Indeed, we can use our newly rediscovered knowledge of the FTOC I to *construct* a function whose derivative is 1/x. Consider the area function

$$A(x) = \int_{\alpha}^{x} \frac{1}{t} dt$$

which measures the area under the graph of the function f(t) = 1/t from α to x. If f(t) satisfies the conditions of the FTOC, then we may conclude that

$$\frac{d}{dx}(A(x)) = \frac{d}{dx}\left(\int_{a}^{x} \frac{1}{t}dt\right) = f(x) = \frac{1}{x}.$$

Well, the function f(t) = 1/t does not satisfy the hypothesis of FTOC I, namely, 1/t is not everywhere continuous. As M.J. has reminded us, we can't always get what we want, but here again we find that we get what we need. The function 1/t is not *everywhere* continuous, but if we restrict our attention to strictly positive values of t, i.e. t > 0, then f(t) is indeed continuous on that restricted domain, and hence FTOC I applies.

Thus, define A(x) as above (1), with the requirement that both α and x are positive. Then by FTOC I, A'(x) = 1/x, and our search is complete.

However, I remain slightly unsatisfied: our solution is not unique. For any a > 0, we have the area function (1). So, let us once and for all choose a special value for a: choose

 $\alpha=1$. Aside from the fact that the number 1 is very nice in many ways, we'll justify this choice as we consider the properties of this function we've just nailed down.

Definition 10. *The* natural logarithm *function, denoted* ln(x)*, is defined by*

$$\ln(x) = \int_1^x \frac{1}{t} dt.$$