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Abstract: 
 

This paper compares the effectiveness of the Finite Volume method and the Finite 
Difference method in numerically computing solutions to the inviscous Burgers equation 

0=+ xt qqq .  It was assumed that the boundary conditions and initial conditions were 
known.  A fourth order Taylor approximation with respect to time in conjunction with a 
finite difference approximation with respect to x was the most successful finite difference 
method attempted.  As higher order approximations were implemented, the calculation 
became more accurate but time consuming.  Further, a small amount of chaos was always 
seen near the shock.  In contrast, the finite volume method was implemented with only a 
first order approximation of flux, known as the Local Lax-Fredrichs method.  Under 
proper grid settings a stable solution was always obtained and more refined grids 
exhibited greater accuracy.  It was discovered that calculation time was far more 
predictable for the finite difference method than for the finite volume method. 
 
 
Introduction: 
 
 Non-hyperbolic PDE’s are known to be very difficult problems to solve, both 
analytically and numerically.  One such equation is the Inviscous Burgers Equation, 

0=+ xt qqq , having a solution that can develop a shock in finite.  At a shock, the 
solution’s derivative is undefined and hence using finite differences, which approximate 
the derivatives of the solution, will inherently have problems computing the solution.  
The finite volume method is much more adapted to handling shocks.  It works under the 
principle of calculating what amount of volume or area is transferred to neighboring cells 
over a small amount of time.  The advantage here is that it doesn’t require any derivative 
approximations of the solution. 
 The performances of both methods, in calculating solutions the inviscous Burgers 
equation, are thoroughly tested and compared.  The initial/boundary conditions of the 
solution are assumed to be known.  The solution is always calculated on the finite spatial 
interval [-5, 5] and we assume the boundary values are held constant over time.  As a 
convention for this paper we let the numerical approximation of the solution at a given  
(x, t) coordinate be denoted as follows: ),( ni

n
i txqQ ≡  where xixxi Δ+≡ 0  and 

tnttn Δ+≡ 0 . 
 There are two forms in which Burgers equation can be expressed.  The form 
displayed above is known as the quasi-linear form.  The second form is called the 
conservative form as shown in equation 1.  
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This is the form used with the finite volume method and hence it will also be used with 
the finite difference method. 
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Part I: Finite Difference Method 
 
 

The conventional way to apply the finite differences method is to approximate 
derivatives of the solution given in the PDE using the appropriate finite difference 
formula.  If one were to apply a high order finite difference formula to equation 1, the 
resulting stencil would require knowing many values in both the x- and t-directions, 
respectively.  If the solution is solved stepwise through time then, given what is known 
about the initial and boundary conditions, it would be best if the stencil used required 
knowing minimal values in the t-direction and could instead rely exclusively on the 
known x-values from the previous time iterate.  This is possible if the finite difference 
method is used on a Taylor approximation of the solution. 
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Now each of the t-derivates can be written in terms of x-derivatives analytically because 

of the simplicity of the PDE.  We already know from equation 1 that
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Continuing to differentiate both sides in terms of t we find the following simple set of 
relations. 
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By plugging this set of formulas into equation 2 we can express 1+n

iQ  completely in terms 
of x-derivatives. 
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Using only minimal order centered finite difference approximations1 on the x-derivatives; 
the formula takes the form given in equation 5 where the ellipses represent linear 
combinations of the solution, to the appropriate power2, at the previous time iterate and 
close spatial values. 
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1 Higher order derivatives require higher order centered approximations at minimum (e.g. there would be 
no way to approximate a fourth order derivative with a second order approximation)  
2 The power of the solution Q corresponds to those in equation 4, within the correct set of parenthesis. 
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For the remainder of the paper, equation 5 will be referred to as an FD formula 
and its order is defined by the order of the corresponding Taylor approximation that was 
used in deriving the FD formula.  To begin, the smooth wave depicted in Figure 1 will be 
used as the initial condition. 

For now we will always set 01.0=Δ=Δ tx , later 
on we will analyze what happens as these 
parameters are varied.  For each trial, the solution 
is computed to t = 5.  When using a second order 
FD formula, the solution remains smooth for small 
values of t.  When the shock is reached, the 
solution becomes chaotic very rapidly.  Figure 2 
shows what this solution looks like at t = 5.  We 
know the solution must be smooth and so clearly 
this is a very poor approximation. 
 

Refining the grid does not give a better 
approximation of the solution.  This chaos arises 
from the fact that the x-derivative of the solution 
is undefined right at the shock, so the finite 
difference approximation breaks down.  To better 
approximate the solution, we use a higher order 
FD formula.  Using fourth order FD formula with 
the same grid settings, we expect that the solution 
should look good up until the shock is reached 
and then some will occur.  Figure 3 shows the the 
solution solved for by the fourth order FD at t = 5 
and t = 10.  The amount of chaos, after the shock, 
has been reduced dramatically and this chaotic 
nature of the solution does not grow with time.  
The chaos actually stays contained near the shock.  

This is a very promising result however one can clearly see that it is not a perfect solution 
as there is still some strange Gibbs phenomena that occurs near the shock.  To find a 
close approximation of the weak solution this method would be insufficient.  As the grid 
is refine the thickness of this spike at the top of the shock reduces however it’s overshoot, 

or height, is not 
reduced.  Fourth 
order was the 
highest order 
that was tested 
here. 
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Figure 1: Initial Condition
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Figure 3: Using second order FD at t=5 
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Figure 2: Using fourth order FD at t=5 and t=10
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 Next, the entropy conditions were checked for xΔ and tΔ .  It was observed that 
when the x-precision was considerably greater than the t-precision, the solution would 
appear to completely diverge off to infinity very quickly as shown in Figure 4a.  
However, when the t-precision was far greater than the x-precision, the chaos was a bit 
more acceptable as shown in Figure 4b.  One property of the solutions to Burger’s 
equation is that the area beneath the curve must remain constant over time.  In the first 
case of chaos (as in Figure 4a), which I will define as type I chaos, the area under the 
curve diverges off to infinity.  Surprisingly however, for the second type of chaos (as in 
Figure 4b), which I will define as type II chaos, the area under the curve remains constant 
over time.  Because there is always some degree of type II chaos in the solutions 
computed by the FD formula, only solutions exhibiting type I chaos are considered   

chaotic solutions.  Hence the variance of the 
area under the curve over time suffices as a 
measure of chaos for these solutions. 
 Under this definition of chaos, it 
would be interesting to know for which 
precisions3 of x and t will the solution be 
chaotic.  Figure 5 shows the results from 
the experiment of testing for chaos over a 
wide variety of precisions.  The x-axis 
represents the t-precision and the y-axis 
represents the x-precision used.  The graph  
shows a red circle whenever the calculated 
solution was chaotic, and a blue star 
otherwise.  There is a clear linear 

relationship between the two indicating 
that the entropy condition has the form 

xt Δ<Δ α .  In this case it appears that 1=α .  Hence this gives the restriction on the grid 
to avoid type II entropy.  This is good because it implies that as long as one chooses an 

                                                 
3 x- and t- precision in this case are defined as 1/dx and 1/dt respectively. 
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adequate ratio between tΔ and xΔ , the grid can contiuously be refined without having to 
worry about type I chaos.  As one can tell, Figure 5 shows several anomolies in the data 
set.  Luckily, every anamoly is a stable solution which that we would have expected to be 
chaotic. 
 The calculation time as a function of the precision is tested next.  We will revert 
to keeping that xt Δ=Δ  and will change both by the same amount when refining the grid.  
For this study, calculation time was defined as the time it took to initialize the solution 
matrix, plus the time to fill in the initial and boundary condtions, plus the time to required 
to iteratively fill in the solution matrix using the finite difference formula.  Figure 6 
displays the results of this experiment where the x-axis represents the grid percision, 

which is measured as the inverse of 
the product xtΔΔ , and the y-axis 
represents the time required to 
compute the solution. 
 There is a clear linear 
dependence on the calculation time 
versus grid precision.  This implies a 
quadratic relationship between the 
precision of one of the dimensions, 
assuming x- and t- precision are held 
equal to eachother. 
 While this finite difference 
method may offer very close 
approximations to the solution as the 
order is increased, there will always 

remain a small amount of chaos and imperfection in the solution around the shock.  
Further, to increase the order is very costly in terms of time.  The calculation times, The 
table below shows the calculation times of the solution up to t = 10, using 

01.0=Δ=Δ tx , for a second, third and fourth order FD formula.  The true relationship 
cannot be determined from these three data point but clearly the calculation time more 
than doubled for each added order.  This suggests possible exponential growth on 
calculation time as order is increased. 
 
 
 

 
 
 
 
 
 
 
 

Order Calculation Time 
2 0.281 
3 1.437 
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Figure 6: Grid precision versus calculation time
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Part II: Finite Difference Method 
 
 The same experiments and analysis were used to test the performance of the finite 
volume method.  First let us derive the necessary formulae that will be used.  The idea 
behind the finite volume method is to calculate the flux across the cells of the spatial grid 
and change the function values over time according to these fluxes.  The advantage here 
is that the derivative of the solution is not needed in the calculation of the solution.  The 
formula is derived through integration techniques rather than derivative approximations.  
Suppose the space and time dimensions are broken up into uniformly spaced intervals of 
size xΔ and tΔ  respectively.  Denote the ith spatial interval as ),( 2/12/1 +−= iii xxX  and 
the nth time interval as ),( 1 nnn ttT −= .  Let us start with equation 1 and integrate both sides 
with respect to x on the ith spatial interval. 
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Next, integrate both sides with respect to t on the nth t-interval and divide both sides of 
by xΔ . 
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The value of ∫Δ iX n dxtxq
x

),(1  is the average value of the function q at the time nt  in the 

interval iX .  Thus, as the grid is refined, n
iX n Qdxtxq

x i

≈
Δ ∫ ),(1 .  Further, let us define the 

flux across the ith spatial cell as ∫ −
− Δ

=
nT

i
ii dt

txq
t

xxF
2

),(1),( 2/1
2

1 .  Now, plugging this 

into equation 7 gives the basic finite volume formula. 
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A lot of literature has been written regarding how to approximate the flux.  The method 
that seemed most suitable to Burgers equation is the Local Lax-Fredrichs method.  For 
this method the flux is approximated as follows. 
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Finally, plugging this definition of flux into equation 8 yields the numerical formula used 
to calculate solutions to Burgers equation with the finite volume method.  It should be 
noted that this method is only a first order approximation of the flux. 
 
 The same initial conditions depicted in Figure 1 will be used and the boundary are 
assumed to remain constant over time.  Fix 01.0=Δ=Δ tx , and let the solution run until  
t = 5.  Figure 7 displays the result of this experiment and remarkably, there is absolutely 
no chaos.  The solution is perfectly smooth and appears to be relatively accurate.  This is 

impressive considering the solution is only 
first order accurate and its calculation 
wasn’t very time consuming.  To check 
how far the solution could be carried 
before becoming chaotic, higher values of 
t were solved for and the solution 
remained smooth through t=50. 
 By the Lax and Wendroff theorem, 
the solution being converged to by this 
method as the grid is refined is the actual 
weak solution to Burgers equation.  Figure 
8 displays the computed solution for 
different refinements of the grid where the 
solution at t=5, for all refinements, are 

given on the same graph.  Clearly there is a convergence and the slope at the shock 
approaches vertical, as it should. 

 Setting 01.0=Δ=Δ tx  again, we 
measure the variation of the area beneath 
the curve over time.  The most that the 
area differed from the initial area at a 
given time had an order of magnitude of 
-14.  This is very close to the machine 
accuracy so it is assumed that area was 
conserved. 

Because of the high accuracy of 
the finite volume method, it is not 
necessary to distinguish between type I 
and type II chaos.  Type I chaos is still 
exhibited for grids with a much higher  
x-precision than t-precision, however 

type II entropy is never seen as the solutions, when not type I chaotic, are always 
perfectly smooth.  The analogue of Figure 4 is given for the finite volume method in 
Figure 9.  Figure 9a displays type I entropy in the case when x-precision is much greater 
than t-precision.  It does not appear to be much different than the type I entropy observed 
with the finite difference method.  Figure 9b shows a case where the t-precision is much 
greater than the x-precision.  While the relative accuracy has not been computed, Figure 
9b is smooth and a much better approximation of the weak solution than Figure 4b. 
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Figure 7: Finite Volume method at t=5
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 As with the finite difference method, we can test the entropy restrictions on the 
grid for this finite volume method.  Figure 10 shows the result of this experiment.  The 
criterion for chaos used here is the variation of the area beneath the curve over time.  
There is a very obvious linear relationship dividing the chaotic and non-chaotic solutions, 
and what’s more pleasing is that there are absolutely no anomalies.  The entropy 

condition for this method has the 
form xt Δ<Δ α  where in this case it 
appears that 1=α .  This is good 
because it implies that we can find a 
stable solution no matter how refined 
the grid is, so long as an appropriate 
ration between the x- and t-precision 
is chosen. 
 Next we test the calculation 
time against grid precision.  The 
calculation time here is defined the 
same way as it was for the finite 
difference method.  Figure 11a 
shows the results of this experiment 
where the x-axis represents the grid 
precision and the y-axis represents 

the runtime.  Strangely, there is not a distinct linear relationship between the grid 
precision and calculation time of the solution.  The solution seems almost linear for less 
refined grids but then becomes more chaotic for more well refined grids.  This is 
disturbing because it doesn’t give a clear upper bound for run.  All of the times are faster 
than the corresponding times for the finite difference method.  The longest calculation 
took just under 2 seconds; where as the longest in the finite difference method took just 
under 6 seconds.  It cannot be said with certainty weather this trend will continue for all 
grid precisions.  To investigate this interesting result further, more refine grids were 
looked at and Figure 11b displays the resulting graph.  The points at higher values still 
appear somewhat uncertain.  All calculations take less than 4 seconds, still less than some 
of the longer calculations of the finite difference method. 
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Figure 9: (a) Type I chaos.  Much greater x-precision   (b) No chaos despite much greater t-precision 
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Figure 10: Entropy plot of x-precision versus t-precision
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There is no clear computational explanation for this inconsistency in runtimes other than 
the fact that the finite volume method uses several subroutines to calculate the flux. 
 

 
 The problem of obtaining a higher order approximation for the finite volume  
method is considered to be a hard one and is not investigated in this paper.  Thus we 
cannot compare runtime to the order of method as was done with the finite difference 
method. 
 
Conclusion: 
 
 After thorough testing and experimentation on both methods, the finite volume 
method is clearly the preferred.  Not only does it offer stable solutions at the first order 
approximation, it also computes the solution much more quickly than comparably 
accurate finite difference methods.  As the grid is refined we know the finite volume 
method converges to the correct solution; however the only problem encountered was the 
runtime versus the grid precision.  The runtime appeared to be fairly unpredictable, as 
more refinements were made to the grid, which is problematic because it will be difficult 
to place an upper bound on the runtime as we’d like to do when making extremely 
accurate calculations of the solution.  None-the-less, for the grids that were tested, the 
finite volume method always performed better in terms of time and accuracy. 
 The entropy condition for both methods were precisely the same however we 
assumed that type II entropy was not really chaos.  The fact that the finite volume method 
never exhibited type II entropy makes it a far more accurate solution over grids within the 
restriction.  The finite volume method is definitely worth looking into further for 
equations in general with non-hyperbolic solutions. 
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Figure 11: (a) Grid precision versus run time.  (b) Run time for much more refined grids. 
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Appendix A: (Matlab Code) 
 
 
% Finite Differences Method on Conservative PDE 
% 
% Determines the solution to a PDE of the following form: 
%  
% q_t + (f(q))_x = 0 
% 
% Subject to the initial/boundary conditions: 
% 
% u(q,0) = a(x) ; u(q_0,t) = u(q_N,t) = 0 ;  
% 
% The functions f(u) and a(x) are to be determined by the user.  After the 
% solution is solved for it can be graphed as a plane in 3D or be shown as 
% an animation on the 2D plane. 
  
  
  
function stable = finite_difference(xprec, tprec) 
  
stable = true; 
  
% Define the mesh upon which the solution will be solved 
  
xprec = 100; 
tprec = 100; 
  
Tinterval = [0 10]; 
Xinterval = [-5 5]; 
  
X = (Xinterval(2) - Xinterval(1))*xprec; 
T = (Tinterval(2) - Tinterval(1))*tprec; 
  
  
dt = (Tinterval(2) - Tinterval(1))/T; 
dx = (Xinterval(2) - Xinterval(1))/X; 
  
t1=clock; 
  
% Initialize the solution matrix 
  
Q = zeros(T+1, X+1); 
  
% Input the initial values using the initial condition a(x) 
  
Q(1,(1:X-1)+1) = a(Xinterval(1)+(1:X-1)*dx); 
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% Input the boundary values using the boundary conditions b(t) and c(t). 
  
Q((0:T)+1,1) = b(Tinterval(1)+(0:T)*dt, Xinterval(1)); 
Q((0:T)+1, X+1) = c(Tinterval(1)+(0:T)*dt, Xinterval(2)); 
  
 
%Area = dx*sum(Q(1,2:X+1)); 
  
% Fill in the rest of the matrix using the finite difference formula 
  
% Basic Second Order Finite Difference: Quasi-Linear Form 
  
%Q(2,(2:X))=Q(1,(2:X)) - (dt/(2*dx))*Q(1, (2:X)).*(Q(1, (2:X)+1)-Q(1,(2:X)-1)); 
%for n = 2:T 
%    Q(n+1,(2:X))=Q(n-1,(2:X)) - (dt/dx)*Q(n, (2:X)).*(Q(n, (2:X)+1)-Q(n,(2:X)-1)); 
%end 
  
%Basic Second Order Finite Difference: Conservative Form 
  
%Q(2,(2:X))= Q(1,(2:X)) - (dt/(4*dx))*(Q(1, (2:X)+1).^2-Q(1,(2:X)-1).^2); 
%for n = 2:T 
%    Q(n+1,(2:X))=Q(n-1,(2:X)) - (dt/(2*dx))*(Q(n, (2:X)+1).^2-Q(n,(2:X)-1).^2); 
%end 
  
% Fourth Order Taylor Using Finite Differences 
  
for n = 1:T 
 Q(n+1,2)= Q(n,2) - (dt/(4*dx))*(Q(n,2+1).^2-Q(n,2-1).^2) + 
(dt^2/(6*dx^2))*(Q(n,2+1).^3-2*Q(n,2).^3+Q(n,2-1).^3) - 
(dt^3/(48*dx^3))*(-3*Q(n,2+4).^4+14*Q(n,2+3).^4 -
24*Q(n,2+2).^4+18*Q(n,2+1).^4-5*Q(n,2).^4); 
 
Q(n+1,(3:X-1))= Q(n,(3:X-1)) –  
(dt/(4*dx))*(Q(n,(3:X-1)+1).^2-Q(n,(3:X-1)-
1).^2)+(dt^2/(6*dx^2))*(Q(n,(3:X-1)+1).^3-2*Q(n,(3:X-1)).^3+Q(n,(3:X-
1)-1).^3) - (dt^3/(48*dx^3))*(Q(n,(3:X-1)+2).^4-2*Q(n,(3:X-
1)+1).^4+2*Q(n,(3:X-1)-1).^4-Q(n,(3:X-1)-2).^4); 
    Q(n+1,X)= Q(n,X) - (dt/(4*dx))*(Q(n,X+1).^2-Q(n,X-
1).^2)+(dt^2/(6*dx^2))*(Q(n,X+1).^3-2*Q(n,X).^3+Q(n,X-1).^3)-
(dt^3/(48*dx^3))*(3*Q(n,X-4).^4-14*Q(n,X-3).^4+24*Q(n,X-2).^4-18*Q(n,X-
1).^4+5*Q(n,X).^4); 
     
    diffArea = dx*sum(Q(n+1,2:X+1))-Area; 
    if (diffArea > 0.01) 
        stable = false; 
        break; 
    end 
  
end 
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if (stable) 
    ['xprec=',num2str(xprec),' tprec=',num2str(tprec),' STABLE'] 
else 
    ['xprec=',num2str(xprec),' tprec=',num2str(tprec),' UNSTABLE'] 
end 
  
t2 = clock; 
  
% Display solution time 
  
if (t1(5) == t2(5)) 
    runtime = t2(6)-t1(6); 
else 
    runtime = 60-t1(6)+t2(6); 
end 
  
['It took ',num2str(runtime),' seconds to calculate the solution.'] 
  
  
if (stable) 
     
     fps = 12; 
     timestep = floor(tprec/fps); 
     i = 1; 
  
     figure(1); 
     for k=1:timestep:T+1 
         time=floor(Tinterval(1)+(k-1)*dt); 
         plot(Xinterval(1)+(1:X+1)*dx-dx,Q(k,:)'); 
         axis([-5 5 0 1]); 
         text(0,0.8,['t= ',num2str(time)]); 
         xlabel('x'); 
         ylabel('Q'); 
          mov(i) = getframe(gca); 
          i = i+1; 
      end 
   
      movie(mov,1,fps*3); 
end 
  
return 
end 
  
 
 
% Initial condition q(x, 0) = a(x) 
  
function y = a(x) 
    y=0.5*(x>=-2 & x<=2).*(cos(x*pi/2)/2+0.5); 
return 
end 
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% Right boundary condition q(0, t) = b(t) 
  
function y = b(t, k) 
[m,n] = size(t); 
y=zeros(1,n)+a(k); 
return 
end 
  
% Left boundary condition q(X, t) = c(t) 
  
function y = c(t, k) 
[m,n]=size(t); 
y=zeros(1,n)+a(k); 
return 
end 
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% Finite Volume Method on Conservative PDE 
% 
% Determines the solution to a PDE of the following form: 
%  
% q_t + (f(q))_x = 0 
% 
% Subject to the initial/boundary conditions: 
% 
% u(q,0) = a(x) ; u(x_0,t) = b(t) ; u(x_n,t) = c(t)  
% 
% The functions f(u), a(x), b(t), c(t) are to be determined by the user.  After the 
% solution is solved for it can be graphed as a plane in 3D or be shown as 
% an animation on the 2D plane.  For this program the initial/boundary 
% conditions are assumed to be those described above. 
  
 function runtime = finite_volume(xprec, tprec) 
  
% Define the mesh upon which the solution will be solved 
  
  
stable = true; 
  
%xprec = 100; 
%tprec = 100; 
  
Tinterval = [0 5]; 
Xinterval = [-5 5]; 
  
X = (Xinterval(2) - Xinterval(1))*xprec; 
T = (Tinterval(2) - Tinterval(1))*tprec; 
  
  
dt = (Tinterval(2) - Tinterval(1))/T; 
dx = (Xinterval(2) - Xinterval(1))/X; 
  
t1 = clock; 
  
% Initialize the solution matrix 
  
Q = zeros(T+1, X+1); 
  
% Input the initial values using the initial condition a(x) 
  
Q(1,(1:X-1)+1) = a(Xinterval(1)+(1:X-1)*dx); 
  
  
% Input the boundary values using the boundary conditions b(t) and c(t). 
  
Q((0:T)+1,1) = b(Tinterval(1)+(0:T)*dt, Xinterval(1)); 
Q((0:T)+1, X+1) = c(Tinterval(1)+(0:T)*dt, Xinterval(2)); 
  
maximum = max([Q(1,:), Q(:,1)', Q(:,X+1)']); 
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% Fill in the rest of the matrix using the finite volume formula 
  
for n = 1:T 
    Q(n+1, 2:X) = Q(n, 2:X) - (dt/dx)*(flux(Q(n,2:X),Q(n,(2:X)+1)) - flux(Q(n,(2:X)-1),Q(n,2:X))); 
    if (max(Q(n+1,:) > (maximum+0.1)) == 1) 
        stable = false; 
        Q = 0; 
        break; 
    end 
end 
  
%display time it took to solve pde. 
  
t2=clock; 
  
if (t1(5) == t2(5)) 
    runtime = t2(6)-t1(6) 
else 
    runtime = 60-t1(6)+t2(6); 
end 
  
['time=',num2str(runtime),' seconds'] 
  
if (stable)    
 
    % Graph the solution in real time 
         
     fps = 12; 
     timestep = floor(tprec/fps); 
     i=1; 
      
     figure(1); 
     plot(Xinterval(1)+(1:X+1)*dx-dx,Q(1,:)'); 
  
     axis([-5 5 0 1]); 
     for k=2:timestep:T+1 
         time=floor(Tinterval(1)+(k-1)*dt); 
         plot(Xinterval(1)+(1:X+1)*dx-dx,Q(k,:)'); 
         axis([-5 5 0 1]); 
         xlabel('x'); 
         ylabel('Q'); 
         text(0,0.8,['Time= 5']); 
         mov(i)=getframe(gca); 
         i=i+1; 
     end 
     
     movie(mov,1,fps*3) 
    
end 
  
 return 
end 
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% Initial condition q(x,0) = a(x) 
  
function y = a(x) 
    y=1*(x>=-2 & x<=2).*(cos(x*pi/2)/2+0.5); 
return 
end 
  
% Right boundary condition q(0, t) = b(t) 
  
function y = b(t, k) 
[m,n] = size(t); 
y=zeros(1,n)+a(k); 
return 
end 
  
% Left boundary condition q(X, t) = c(t) 
  
function y = c(t, k) 
[m,n]=size(t); 
y=zeros(1,n)+a(k); 
return 
end 
  
% The conservative flux function 
  
function u = f(q) 
  
    u = (q.^2)/2;  % Berger's equation 
  
return 
end 
  
% The derrivative of the conservative flux function 
  
function u = ff(q) 
  
u=q;    % Berger's Equation 
  
return 
end 
  
% The flux algorithm impliments the Lax-Friedrichs and Local Lax-Friedrichs 
% Methods 
  
function F=flux(Q1, Q2) 
  
F = 1/2*(f(Q1) + f(Q2) - max(abs(ff(Q1)), abs(ff(Q2))).*(Q2-Q1)); 
  
return 
end 
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