
1

Abstract:

This paper compares the effectiveness of the Finite Volume method and the Finite
Difference method in numerically computing solutions to the inviscous Burgers equation

0=+ xt qqq . It was assumed that the boundary conditions and initial conditions were
known. A fourth order Taylor approximation with respect to time in conjunction with a
finite difference approximation with respect to x was the most successful finite difference
method attempted. As higher order approximations were implemented, the calculation
became more accurate but time consuming. Further, a small amount of chaos was always
seen near the shock. In contrast, the finite volume method was implemented with only a
first order approximation of flux, known as the Local Lax-Fredrichs method. Under
proper grid settings a stable solution was always obtained and more refined grids
exhibited greater accuracy. It was discovered that calculation time was far more
predictable for the finite difference method than for the finite volume method.

Introduction:

 Non-hyperbolic PDE’s are known to be very difficult problems to solve, both
analytically and numerically. One such equation is the Inviscous Burgers Equation,

0=+ xt qqq , having a solution that can develop a shock in finite. At a shock, the
solution’s derivative is undefined and hence using finite differences, which approximate
the derivatives of the solution, will inherently have problems computing the solution.
The finite volume method is much more adapted to handling shocks. It works under the
principle of calculating what amount of volume or area is transferred to neighboring cells
over a small amount of time. The advantage here is that it doesn’t require any derivative
approximations of the solution.
 The performances of both methods, in calculating solutions the inviscous Burgers
equation, are thoroughly tested and compared. The initial/boundary conditions of the
solution are assumed to be known. The solution is always calculated on the finite spatial
interval [-5, 5] and we assume the boundary values are held constant over time. As a
convention for this paper we let the numerical approximation of the solution at a given
(x, t) coordinate be denoted as follows:),(ni

n
i txqQ ≡ where xixxi Δ+≡ 0 and

tnttn Δ+≡ 0 .
 There are two forms in which Burgers equation can be expressed. The form
displayed above is known as the quasi-linear form. The second form is called the
conservative form as shown in equation 1.

0
2

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

x
t

qq (1)

This is the form used with the finite volume method and hence it will also be used with
the finite difference method.

2

Part I: Finite Difference Method

The conventional way to apply the finite differences method is to approximate
derivatives of the solution given in the PDE using the appropriate finite difference
formula. If one were to apply a high order finite difference formula to equation 1, the
resulting stencil would require knowing many values in both the x- and t-directions,
respectively. If the solution is solved stepwise through time then, given what is known
about the initial and boundary conditions, it would be best if the stencil used required
knowing minimal values in the t-direction and could instead rely exclusively on the
known x-values from the previous time iterate. This is possible if the finite difference
method is used on a Taylor approximation of the solution.

() () () ...
62

32
1 +

Δ
+

Δ
+Δ+=+

ttt
n
itt

n
it

n
i

n
i

n
i QtQtQtQQ (2)

Now each of the t-derivates can be written in terms of x-derivatives analytically because

of the simplicity of the PDE. We already know from equation 1 that
x

t
qq ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

2

2

.

Continuing to differentiate both sides in terms of t we find the following simple set of
relations.

xx
tt

qq ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

3

3

xxx

ttt
qq ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

4

4

xxxx

tttt
qq ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

5

5

 (3)

By plugging this set of formulas into equation 2 we can express 1+n

iQ completely in terms
of x-derivatives.

...
4

)(
63

)(
22

)(43322
1 +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛Δ
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛Δ
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Δ−=+

xxx

n
i

xx

n
i

x

n
in

i
n
i

QtQtQ
tQQ (4)

Using only minimal order centered finite difference approximations1 on the x-derivatives;
the formula takes the form given in equation 5 where the ellipses represent linear
combinations of the solution, to the appropriate power2, at the previous time iterate and
close spatial values.

() () ())(O...
48

...
6

...
4

44
3

3

2

2
1 xt

x
t

x
t

x
tQQ xxxxx

n
i

n
i Δ+Δ+

Δ
Δ

−
Δ
Δ

+
Δ
Δ

−=+ (5)

1 Higher order derivatives require higher order centered approximations at minimum (e.g. there would be
no way to approximate a fourth order derivative with a second order approximation)
2 The power of the solution Q corresponds to those in equation 4, within the correct set of parenthesis.

3

For the remainder of the paper, equation 5 will be referred to as an FD formula
and its order is defined by the order of the corresponding Taylor approximation that was
used in deriving the FD formula. To begin, the smooth wave depicted in Figure 1 will be
used as the initial condition.

For now we will always set 01.0=Δ=Δ tx , later
on we will analyze what happens as these
parameters are varied. For each trial, the solution
is computed to t = 5. When using a second order
FD formula, the solution remains smooth for small
values of t. When the shock is reached, the
solution becomes chaotic very rapidly. Figure 2
shows what this solution looks like at t = 5. We
know the solution must be smooth and so clearly
this is a very poor approximation.

Refining the grid does not give a better
approximation of the solution. This chaos arises
from the fact that the x-derivative of the solution
is undefined right at the shock, so the finite
difference approximation breaks down. To better
approximate the solution, we use a higher order
FD formula. Using fourth order FD formula with
the same grid settings, we expect that the solution
should look good up until the shock is reached
and then some will occur. Figure 3 shows the the
solution solved for by the fourth order FD at t = 5
and t = 10. The amount of chaos, after the shock,
has been reduced dramatically and this chaotic
nature of the solution does not grow with time.
The chaos actually stays contained near the shock.

This is a very promising result however one can clearly see that it is not a perfect solution
as there is still some strange Gibbs phenomena that occurs near the shock. To find a
close approximation of the weak solution this method would be insufficient. As the grid
is refine the thickness of this spike at the top of the shock reduces however it’s overshoot,

or height, is not
reduced. Fourth
order was the
highest order
that was tested
here.

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t= 0

x

Q

Figure 1: Initial Condition

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t= 5

x

Q

Figure 3: Using second order FD at t=5

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t= 5

x

Q

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t= 10

x

Q

Figure 2: Using fourth order FD at t=5 and t=10

4

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

t-precision

x-
pr

ec
is

io
n

 Next, the entropy conditions were checked for xΔ and tΔ . It was observed that
when the x-precision was considerably greater than the t-precision, the solution would
appear to completely diverge off to infinity very quickly as shown in Figure 4a.
However, when the t-precision was far greater than the x-precision, the chaos was a bit
more acceptable as shown in Figure 4b. One property of the solutions to Burger’s
equation is that the area beneath the curve must remain constant over time. In the first
case of chaos (as in Figure 4a), which I will define as type I chaos, the area under the
curve diverges off to infinity. Surprisingly however, for the second type of chaos (as in
Figure 4b), which I will define as type II chaos, the area under the curve remains constant
over time. Because there is always some degree of type II chaos in the solutions
computed by the FD formula, only solutions exhibiting type I chaos are considered

chaotic solutions. Hence the variance of the
area under the curve over time suffices as a
measure of chaos for these solutions.
 Under this definition of chaos, it
would be interesting to know for which
precisions3 of x and t will the solution be
chaotic. Figure 5 shows the results from
the experiment of testing for chaos over a
wide variety of precisions. The x-axis
represents the t-precision and the y-axis
represents the x-precision used. The graph
shows a red circle whenever the calculated
solution was chaotic, and a blue star
otherwise. There is a clear linear

relationship between the two indicating
that the entropy condition has the form

xt Δ<Δ α . In this case it appears that 1=α . Hence this gives the restriction on the grid
to avoid type II entropy. This is good because it implies that as long as one chooses an

3 x- and t- precision in this case are defined as 1/dx and 1/dt respectively.

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t= 0.5

x

Q

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t= 5

x

Q

5

adequate ratio between tΔ and xΔ , the grid can contiuously be refined without having to
worry about type I chaos. As one can tell, Figure 5 shows several anomolies in the data
set. Luckily, every anamoly is a stable solution which that we would have expected to be
chaotic.
 The calculation time as a function of the precision is tested next. We will revert
to keeping that xt Δ=Δ and will change both by the same amount when refining the grid.
For this study, calculation time was defined as the time it took to initialize the solution
matrix, plus the time to fill in the initial and boundary condtions, plus the time to required
to iteratively fill in the solution matrix using the finite difference formula. Figure 6
displays the results of this experiment where the x-axis represents the grid percision,

which is measured as the inverse of
the product xtΔΔ , and the y-axis
represents the time required to
compute the solution.
 There is a clear linear
dependence on the calculation time
versus grid precision. This implies a
quadratic relationship between the
precision of one of the dimensions,
assuming x- and t- precision are held
equal to eachother.
 While this finite difference
method may offer very close
approximations to the solution as the
order is increased, there will always

remain a small amount of chaos and imperfection in the solution around the shock.
Further, to increase the order is very costly in terms of time. The calculation times, The
table below shows the calculation times of the solution up to t = 10, using

01.0=Δ=Δ tx , for a second, third and fourth order FD formula. The true relationship
cannot be determined from these three data point but clearly the calculation time more
than doubled for each added order. This suggests possible exponential growth on
calculation time as order is increased.

Order Calculation Time
2 0.281
3 1.437
4 3.157

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

1

2

3

4

5

6

grid precision

ca
lc

ul
at

io
n

tim
e

Figure 6: Grid precision versus calculation time

6

Part II: Finite Difference Method

 The same experiments and analysis were used to test the performance of the finite
volume method. First let us derive the necessary formulae that will be used. The idea
behind the finite volume method is to calculate the flux across the cells of the spatial grid
and change the function values over time according to these fluxes. The advantage here
is that the derivative of the solution is not needed in the calculation of the solution. The
formula is derived through integration techniques rather than derivative approximations.
Suppose the space and time dimensions are broken up into uniformly spaced intervals of
size xΔ and tΔ respectively. Denote the ith spatial interval as),(2/12/1 +−= iii xxX and
the nth time interval as),(1 nnn ttT −= . Let us start with equation 1 and integrate both sides
with respect to x on the ith spatial interval.

0
2

),(),(2/1
2

2/1
2

=
−

+ −+∫
txqtxq

dxq ii

X t
i

 or
2

),(),(2/1
2

2/1
2 txqtxq

qdx
dt
d ii

X i

+− −
=∫ (6)

Next, integrate both sides with respect to t on the nth t-interval and divide both sides of
by xΔ .

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

Δ
=

Δ
−

Δ ∫∫∫∫ +−
− dt

txq
dt

txq
x

dxtxq
x

dxtxq
x nnii T

i

T

i

X nX n 2
),(

2
),(1),(1),(1 2/1

2
2/1

2

1 (7)

The value of ∫Δ iX n dxtxq
x

),(1 is the average value of the function q at the time nt in the

interval iX . Thus, as the grid is refined, n
iX n Qdxtxq

x i

≈
Δ ∫),(1 . Further, let us define the

flux across the ith spatial cell as ∫ −
− Δ

=
nT

i
ii dt

txq
t

xxF
2

),(1),(2/1
2

1 . Now, plugging this

into equation 7 gives the basic finite volume formula.

()),(),(11
1

iiii
n
i

n
i xxFxxF

x
tQQ −+

+ −
Δ
Δ

−= (8)

A lot of literature has been written regarding how to approximate the flux. The method
that seemed most suitable to Burgers equation is the Local Lax-Fredrichs method. For
this method the flux is approximated as follows.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅−

+
= −−

−
−)(),max(

2
)()(

2
1),(11

22
1

1
n
i

n
i

n
i

n
i

n
i

n
i

ii QQQQ
QQ

xxF (9)

7

Finally, plugging this definition of flux into equation 8 yields the numerical formula used
to calculate solutions to Burgers equation with the finite volume method. It should be
noted that this method is only a first order approximation of the flux.

 The same initial conditions depicted in Figure 1 will be used and the boundary are
assumed to remain constant over time. Fix 01.0=Δ=Δ tx , and let the solution run until
t = 5. Figure 7 displays the result of this experiment and remarkably, there is absolutely
no chaos. The solution is perfectly smooth and appears to be relatively accurate. This is

impressive considering the solution is only
first order accurate and its calculation
wasn’t very time consuming. To check
how far the solution could be carried
before becoming chaotic, higher values of
t were solved for and the solution
remained smooth through t=50.
 By the Lax and Wendroff theorem,
the solution being converged to by this
method as the grid is refined is the actual
weak solution to Burgers equation. Figure
8 displays the computed solution for
different refinements of the grid where the
solution at t=5, for all refinements, are

given on the same graph. Clearly there is a convergence and the slope at the shock
approaches vertical, as it should.

 Setting 01.0=Δ=Δ tx again, we
measure the variation of the area beneath
the curve over time. The most that the
area differed from the initial area at a
given time had an order of magnitude of
-14. This is very close to the machine
accuracy so it is assumed that area was
conserved.

Because of the high accuracy of
the finite volume method, it is not
necessary to distinguish between type I
and type II chaos. Type I chaos is still
exhibited for grids with a much higher
x-precision than t-precision, however

type II entropy is never seen as the solutions, when not type I chaotic, are always
perfectly smooth. The analogue of Figure 4 is given for the finite volume method in
Figure 9. Figure 9a displays type I entropy in the case when x-precision is much greater
than t-precision. It does not appear to be much different than the type I entropy observed
with the finite difference method. Figure 9b shows a case where the t-precision is much
greater than the x-precision. While the relative accuracy has not been computed, Figure
9b is smooth and a much better approximation of the weak solution than Figure 4b.

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

Q

Time= 5

Figure 7: Finite Volume method at t=5

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x

Q

Figure 8: Finite Volume Method for various grid
precisions

8

 As with the finite difference method, we can test the entropy restrictions on the
grid for this finite volume method. Figure 10 shows the result of this experiment. The
criterion for chaos used here is the variation of the area beneath the curve over time.
There is a very obvious linear relationship dividing the chaotic and non-chaotic solutions,
and what’s more pleasing is that there are absolutely no anomalies. The entropy

condition for this method has the
form xt Δ<Δ α where in this case it
appears that 1=α . This is good
because it implies that we can find a
stable solution no matter how refined
the grid is, so long as an appropriate
ration between the x- and t-precision
is chosen.
 Next we test the calculation
time against grid precision. The
calculation time here is defined the
same way as it was for the finite
difference method. Figure 11a
shows the results of this experiment
where the x-axis represents the grid
precision and the y-axis represents

the runtime. Strangely, there is not a distinct linear relationship between the grid
precision and calculation time of the solution. The solution seems almost linear for less
refined grids but then becomes more chaotic for more well refined grids. This is
disturbing because it doesn’t give a clear upper bound for run. All of the times are faster
than the corresponding times for the finite difference method. The longest calculation
took just under 2 seconds; where as the longest in the finite difference method took just
under 6 seconds. It cannot be said with certainty weather this trend will continue for all
grid precisions. To investigate this interesting result further, more refine grids were
looked at and Figure 11b displays the resulting graph. The points at higher values still
appear somewhat uncertain. All calculations take less than 4 seconds, still less than some
of the longer calculations of the finite difference method.

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

Q

Time= 0.75

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

Q

Time= 5

Figure 9: (a) Type I chaos. Much greater x-precision (b) No chaos despite much greater t-precision

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

t-precision

x-
pr

ec
is

io
n

Figure 10: Entropy plot of x-precision versus t-precision

9

There is no clear computational explanation for this inconsistency in runtimes other than
the fact that the finite volume method uses several subroutines to calculate the flux.

 The problem of obtaining a higher order approximation for the finite volume
method is considered to be a hard one and is not investigated in this paper. Thus we
cannot compare runtime to the order of method as was done with the finite difference
method.

Conclusion:

 After thorough testing and experimentation on both methods, the finite volume
method is clearly the preferred. Not only does it offer stable solutions at the first order
approximation, it also computes the solution much more quickly than comparably
accurate finite difference methods. As the grid is refined we know the finite volume
method converges to the correct solution; however the only problem encountered was the
runtime versus the grid precision. The runtime appeared to be fairly unpredictable, as
more refinements were made to the grid, which is problematic because it will be difficult
to place an upper bound on the runtime as we’d like to do when making extremely
accurate calculations of the solution. None-the-less, for the grids that were tested, the
finite volume method always performed better in terms of time and accuracy.
 The entropy condition for both methods were precisely the same however we
assumed that type II entropy was not really chaos. The fact that the finite volume method
never exhibited type II entropy makes it a far more accurate solution over grids within the
restriction. The finite volume method is definitely worth looking into further for
equations in general with non-hyperbolic solutions.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

grid precision

ca
lc

ul
at

io
n

tim
e

0 1 2 3 4 5 6 7 8 9

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

grid precision

ca
lc

ul
at

io
n

tim
e

Figure 11: (a) Grid precision versus run time. (b) Run time for much more refined grids.

10

Appendix A: (Matlab Code)

% Finite Differences Method on Conservative PDE
%
% Determines the solution to a PDE of the following form:
%
% q_t + (f(q))_x = 0
%
% Subject to the initial/boundary conditions:
%
% u(q,0) = a(x) ; u(q_0,t) = u(q_N,t) = 0 ;
%
% The functions f(u) and a(x) are to be determined by the user. After the
% solution is solved for it can be graphed as a plane in 3D or be shown as
% an animation on the 2D plane.

function stable = finite_difference(xprec, tprec)

stable = true;

% Define the mesh upon which the solution will be solved

xprec = 100;
tprec = 100;

Tinterval = [0 10];
Xinterval = [-5 5];

X = (Xinterval(2) - Xinterval(1))*xprec;
T = (Tinterval(2) - Tinterval(1))*tprec;

dt = (Tinterval(2) - Tinterval(1))/T;
dx = (Xinterval(2) - Xinterval(1))/X;

t1=clock;

% Initialize the solution matrix

Q = zeros(T+1, X+1);

% Input the initial values using the initial condition a(x)

Q(1,(1:X-1)+1) = a(Xinterval(1)+(1:X-1)*dx);

11

% Input the boundary values using the boundary conditions b(t) and c(t).

Q((0:T)+1,1) = b(Tinterval(1)+(0:T)*dt, Xinterval(1));
Q((0:T)+1, X+1) = c(Tinterval(1)+(0:T)*dt, Xinterval(2));

%Area = dx*sum(Q(1,2:X+1));

% Fill in the rest of the matrix using the finite difference formula

% Basic Second Order Finite Difference: Quasi-Linear Form

%Q(2,(2:X))=Q(1,(2:X)) - (dt/(2*dx))*Q(1, (2:X)).*(Q(1, (2:X)+1)-Q(1,(2:X)-1));
%for n = 2:T
% Q(n+1,(2:X))=Q(n-1,(2:X)) - (dt/dx)*Q(n, (2:X)).*(Q(n, (2:X)+1)-Q(n,(2:X)-1));
%end

%Basic Second Order Finite Difference: Conservative Form

%Q(2,(2:X))= Q(1,(2:X)) - (dt/(4*dx))*(Q(1, (2:X)+1).^2-Q(1,(2:X)-1).^2);
%for n = 2:T
% Q(n+1,(2:X))=Q(n-1,(2:X)) - (dt/(2*dx))*(Q(n, (2:X)+1).^2-Q(n,(2:X)-1).^2);
%end

% Fourth Order Taylor Using Finite Differences

for n = 1:T
 Q(n+1,2)= Q(n,2) - (dt/(4*dx))*(Q(n,2+1).^2-Q(n,2-1).^2) +
(dt^2/(6*dx^2))*(Q(n,2+1).^3-2*Q(n,2).^3+Q(n,2-1).^3) -
(dt^3/(48*dx^3))*(-3*Q(n,2+4).^4+14*Q(n,2+3).^4 -
24*Q(n,2+2).^4+18*Q(n,2+1).^4-5*Q(n,2).^4);

Q(n+1,(3:X-1))= Q(n,(3:X-1)) –
(dt/(4*dx))*(Q(n,(3:X-1)+1).^2-Q(n,(3:X-1)-
1).^2)+(dt^2/(6*dx^2))*(Q(n,(3:X-1)+1).^3-2*Q(n,(3:X-1)).^3+Q(n,(3:X-
1)-1).^3) - (dt^3/(48*dx^3))*(Q(n,(3:X-1)+2).^4-2*Q(n,(3:X-
1)+1).^4+2*Q(n,(3:X-1)-1).^4-Q(n,(3:X-1)-2).^4);
 Q(n+1,X)= Q(n,X) - (dt/(4*dx))*(Q(n,X+1).^2-Q(n,X-
1).^2)+(dt^2/(6*dx^2))*(Q(n,X+1).^3-2*Q(n,X).^3+Q(n,X-1).^3)-
(dt^3/(48*dx^3))*(3*Q(n,X-4).^4-14*Q(n,X-3).^4+24*Q(n,X-2).^4-18*Q(n,X-
1).^4+5*Q(n,X).^4);

 diffArea = dx*sum(Q(n+1,2:X+1))-Area;
 if (diffArea > 0.01)
 stable = false;
 break;
 end

end

12

if (stable)
 ['xprec=',num2str(xprec),' tprec=',num2str(tprec),' STABLE']
else
 ['xprec=',num2str(xprec),' tprec=',num2str(tprec),' UNSTABLE']
end

t2 = clock;

% Display solution time

if (t1(5) == t2(5))
 runtime = t2(6)-t1(6);
else
 runtime = 60-t1(6)+t2(6);
end

['It took ',num2str(runtime),' seconds to calculate the solution.']

if (stable)

 fps = 12;
 timestep = floor(tprec/fps);
 i = 1;

 figure(1);
 for k=1:timestep:T+1
 time=floor(Tinterval(1)+(k-1)*dt);
 plot(Xinterval(1)+(1:X+1)*dx-dx,Q(k,:)');
 axis([-5 5 0 1]);
 text(0,0.8,['t= ',num2str(time)]);
 xlabel('x');
 ylabel('Q');
 mov(i) = getframe(gca);
 i = i+1;
 end

 movie(mov,1,fps*3);
end

return
end

% Initial condition q(x, 0) = a(x)

function y = a(x)
 y=0.5*(x>=-2 & x<=2).*(cos(x*pi/2)/2+0.5);
return
end

13

% Right boundary condition q(0, t) = b(t)

function y = b(t, k)
[m,n] = size(t);
y=zeros(1,n)+a(k);
return
end

% Left boundary condition q(X, t) = c(t)

function y = c(t, k)
[m,n]=size(t);
y=zeros(1,n)+a(k);
return
end

14

% Finite Volume Method on Conservative PDE
%
% Determines the solution to a PDE of the following form:
%
% q_t + (f(q))_x = 0
%
% Subject to the initial/boundary conditions:
%
% u(q,0) = a(x) ; u(x_0,t) = b(t) ; u(x_n,t) = c(t)
%
% The functions f(u), a(x), b(t), c(t) are to be determined by the user. After the
% solution is solved for it can be graphed as a plane in 3D or be shown as
% an animation on the 2D plane. For this program the initial/boundary
% conditions are assumed to be those described above.

 function runtime = finite_volume(xprec, tprec)

% Define the mesh upon which the solution will be solved

stable = true;

%xprec = 100;
%tprec = 100;

Tinterval = [0 5];
Xinterval = [-5 5];

X = (Xinterval(2) - Xinterval(1))*xprec;
T = (Tinterval(2) - Tinterval(1))*tprec;

dt = (Tinterval(2) - Tinterval(1))/T;
dx = (Xinterval(2) - Xinterval(1))/X;

t1 = clock;

% Initialize the solution matrix

Q = zeros(T+1, X+1);

% Input the initial values using the initial condition a(x)

Q(1,(1:X-1)+1) = a(Xinterval(1)+(1:X-1)*dx);

% Input the boundary values using the boundary conditions b(t) and c(t).

Q((0:T)+1,1) = b(Tinterval(1)+(0:T)*dt, Xinterval(1));
Q((0:T)+1, X+1) = c(Tinterval(1)+(0:T)*dt, Xinterval(2));

maximum = max([Q(1,:), Q(:,1)', Q(:,X+1)']);

15

% Fill in the rest of the matrix using the finite volume formula

for n = 1:T
 Q(n+1, 2:X) = Q(n, 2:X) - (dt/dx)*(flux(Q(n,2:X),Q(n,(2:X)+1)) - flux(Q(n,(2:X)-1),Q(n,2:X)));
 if (max(Q(n+1,:) > (maximum+0.1)) == 1)
 stable = false;
 Q = 0;
 break;
 end
end

%display time it took to solve pde.

t2=clock;

if (t1(5) == t2(5))
 runtime = t2(6)-t1(6)
else
 runtime = 60-t1(6)+t2(6);
end

['time=',num2str(runtime),' seconds']

if (stable)

 % Graph the solution in real time

 fps = 12;
 timestep = floor(tprec/fps);
 i=1;

 figure(1);
 plot(Xinterval(1)+(1:X+1)*dx-dx,Q(1,:)');

 axis([-5 5 0 1]);
 for k=2:timestep:T+1
 time=floor(Tinterval(1)+(k-1)*dt);
 plot(Xinterval(1)+(1:X+1)*dx-dx,Q(k,:)');
 axis([-5 5 0 1]);
 xlabel('x');
 ylabel('Q');
 text(0,0.8,['Time= 5']);
 mov(i)=getframe(gca);
 i=i+1;
 end

 movie(mov,1,fps*3)

end

 return
end

16

% Initial condition q(x,0) = a(x)

function y = a(x)
 y=1*(x>=-2 & x<=2).*(cos(x*pi/2)/2+0.5);
return
end

% Right boundary condition q(0, t) = b(t)

function y = b(t, k)
[m,n] = size(t);
y=zeros(1,n)+a(k);
return
end

% Left boundary condition q(X, t) = c(t)

function y = c(t, k)
[m,n]=size(t);
y=zeros(1,n)+a(k);
return
end

% The conservative flux function

function u = f(q)

 u = (q.^2)/2; % Berger's equation

return
end

% The derrivative of the conservative flux function

function u = ff(q)

u=q; % Berger's Equation

return
end

% The flux algorithm impliments the Lax-Friedrichs and Local Lax-Friedrichs
% Methods

function F=flux(Q1, Q2)

F = 1/2*(f(Q1) + f(Q2) - max(abs(ff(Q1)), abs(ff(Q2))).*(Q2-Q1));

return
end

17

References

Leveque, Randall. Finite Volume Methods for Hyperbolic Problems. Cambridge:
 Cambridge University Press, 2002.

Jacobsen, Jon. Apr. 2006. Harvey Mudd College

Yong, Darryl. Apr. 2006. Harvey Mudd College

