Neural Networks and the Brain
a.k.a. Will I Graduate?

Laura Elisa Celis

Friday, April 28th

1 Introduction

Biological neurons, namely those found in the brain, are interconnected in
vast and complex networks. They work by taking an input, and if the input
is “strong enough”, passing the message on to other neurons. Each neuron
may have several inputs, and it is only when the combination is right that
the message continues on to other neurons. Amazingly enough this is all
the structure we need for the complex processing in our brains to work!
An artificial neural network attempts to simulate how the brain works in
the hopes of being able to quickly and efficiently process information in an
equivalent manner. In addition, artificial networks can be trained in a way
that allows them to “learn”, again simulating brain function.

Here I explore the world of neural networks and the role of data in the
learning process. I determine that in some cases, we may not need to train
a network as rigorously as is often assumed. By making a base class of
assumptions, potentially similar to those base assumptions we as people
often make in real life, the network can learn enough to make reasonable
judgements about the way in which the world works.

2 Neural Networks

To begin our discussion, I give a brief introduction into what a neural net-
work actually is, and the way in which it is often constructed and trained.
This will allow me to discuss my efforts in more detail.

2.1 Topology

The first thing to consider in a network is its topology - namely how it is
put together. Clearly we are going to need some number of inputs. These
inputs are the information we know, and what we will base our prediction
on. To give an example, weather predictions are often made using neural
networks with 19 inputs. Additionally, in order for the network to be useful,
it must have some number of outputs. In the weather example there may be
several outputs such as temperature, wind speed, and probability of rain.
However many useful networks produce simply one output.[StatSoft, 2004]

Additionally, a network will have a series of hidden layers between the
inputs and the outputs. Information always flows from the inputs to the
outputs through these layers with no backtracking. The purpose of the
layers is to allow us to take into account relationships between the different
input variables. If the inputs are orthogonal (i.e. no input value depends
on another), then such layers are unnecessary. However, this is rarely the
case. Thus, the hidden layers can group different combinations of the input
variables together in a more meaningful manner.[StatSoft, 2004]

The way we get from the inputs to the outputs is through a series of
transfer functions. Any non-input node will have a transfer function associ-
ated with it. This function takes n inputs and returns a scalar value which
becomes the input for the next layer. Thus, a given layer will have m transfer
functions, each with n inputs, and the next layer will have ¢ transfer func-
tions each with m inputs, etc. These functions can vary widely depending on
their use, however are commonly some form of step or sigmoid function that
take as input a weighted sum of the n variables'. The one thing all transfer
functions have in common is that they are differentiable. This is important
because we often rely on this fact when training a network.[StatSoft, 2004]

2.2 Learning

Similar to people, a network learns through experience. A network is trained
using data where both the input and the output is known. This data is
called the training set. In weather networks, data from the previous two
to five years is often used as the training set. By running these inputs
through the network, and then adjusting the transition functions based on
the disparity between the output and the known outcome, the network can
learn to predict outcomes more correctly. This process is repeated on the
same training set many times, usually until the network has converged to

I This is described in more detail in Section 2.2.1

—
—
—_

Figure 1: This is an example of a neural net with two inputs, one output,
and one five node hidden layer. The transitions are represented by edges.
This figure taken from [Wikipeia, 2006]

the point that the error is no larger than some preset goal, or until it has
run though the training set some number of epochs. [Wikipeia, 2006]

There are many different ways in which a neural network is trained. Most
use a general method called backpropagation where each output node cal-
culates its error and adjusts its transfer function accordingly. Then each
output node allocates blame for the source of its error to the nodes in
the previous layer. These neurons then calculate their error based on said
blame, and the process repeats, propagating backwards through the net-
work. [Wikipeia, 2006] To frame this more mathematically, the training
uses the gradient of the error in order to determine how to proceed towards
an optimal configuration. [Grudic, 2006]

It is also important to note that there are two large distinctions between
types of training methods. Some are stochastic, or on-line, and others are
standard or batch algorithms. In a standard gradient descent algorithm,
we adjust the transfer functions according the gradient as determined by
whole of the data in the training set. Thus every datum is considered before
the network is adjusted. In a stochastic algorithm the transfer functions
are adjusted after every time a training datum is run. For large training
sets a stochastic method is much more efficient. Additionally, the stochastic
method can be made to approximate the batch method arbitrarily closely.
Thus, stochastic algorithms tend to be the method of choice when it comes

N N

\\‘\,\

Xk
“‘\‘"/_ \ I
Lt to)) |1
5] O O C o
"“\;*—'/ /

Figure 2: This depicts the level curves of the function, and the gradient at
a given point. The gradient can then direct us towards local maxima or
minima as appropriate. Image taken from [Wikipeia, 2006]

to network training. [Weisstein, 2006, Wikipeia, 2006, Grudic, 2006]

2.2.1 Gradient Descent

As mentioned earlier, the way in which a network learns is usually using a
type of gradient descent algorithm. A general gradient descent algorithm
approaches a local minimum by computing the gradient of the error of a
given network, and using that to then minimize said error. This is depicted
in figuregrad.[Weisstein, 2006] As mentioned above, one of the most common
form of transition function is the logarithmic sigmoid function, which is
defined as o(x) = H% This is a nice function both because it gives
us a smoother step (see Figure 2.2.1), and because its derivative is simply
o'(x) = o(x)(1 — o(x)). This means it is easy to work with in the context
of a gradient descent algorithm.[Weisstein, 2006, Grudic, 2006]

During this discussion I use a standard gradient descent algorithm with
a logarithmic sigmoid function as the transfer function. The input to the
sigmoid function will simply be a weighted average of the inputs to the node.
This example gives the basic idea of how a gradient descent algorithm works.
This basic concept is generalizable to other gradient descent methods and
differentiable transfer functions. [Grudic, 2006]

Let us consider a single sigmoid unit with n inputs as depicted in Fig-

—_

= =@ =@ @ = @ =
o = M o w
T

Figure 3: This is a generic sigmoid function. Image taken from
[Wikipeia, 2006]

ure 2.2.1. These inputs can be represented as a vector x that depends on
the input to the network as a whole. The output of the sigmoid unit is
o(s) where s = X' jw;x; and w; is the weight assigned to the input en-
try x;. For a given training example d in the set of all training data D,
the error for this unit is Eq = (tq — o(z4))? where t4 is the expected out-
put. Recall that the logarithmic sigmoid function has the nice property that
o(z) =o(z)(1 —o(x)).

Given this information, let us compute the gradient of the error sigmoid
unit. Notice that each entry is a partial derivative that looks like:

oF 01
ow; Ow; 2 Z(td B Od)2'
v " deD

w

Figure 4: This is a depiction of a single sigmoid unit with m inputs. Image
taken from [Wikipeia, 2006]

Let us solve this equation.

Y T g ofa)
i dep "

_ 1 2(td—0(:13d))ai)_(td—0($d))
deD ‘

= — Z(td —o(x))806§fd)
deD !

B Oo(xq) Oxg

= - %(td —o(zq)) By Ouw;

= — Z(td — a(xd))a(xd)(l - U(xd))xi,d
deD

This gives us the gradient of the error for this unit! [Grudic, 2006]

We can now adjust the weights that correspond to the inputs to our
unit, where @ = @ — rAE. Where r is the learning factor (discussed in
Section 2.2.2). Because we have adjusted the weights in a way that will
minimize the error, we have taken a step towards a minima of the error
function, and thus will fit the data more accurately.

In order to generalize this to more complicated networks, we simply need
a way of assigning the blame for the error and thus propagate the corrections

back through the network. This is usually done by letting the error of a node
i on the input x4 to be §; = >, w; k0, where K is the set of all nodes
that use the output of h as an input. Thus, the error is assigned to the
nodes in a way that is proportional to their influence. Now, J; can replace
(tqg — o(zq) in the equation for the gradient of F, which allows us to adjust
the weights of the inner layers.

2.2.2 Improvements on Training

When training, there is a learning factor r < 1 that describes the rate at
which we allow a network to learn. This prevents massive fluctuation in
the behavior of the network.[Bernacki and Wlodarczyk, 2006] One way to
adjust the generic gradient descent algorithm is to use something called
adaptive learning where the learning factor is varied throughout the course
of training. Thus it can begin large while we initially converge towards
some minima, and then get smaller as it fine tunes the transfer functions.
[Matlab, 2005]

Another factor that is sometimes used is what is called momentum.
When training with momentum, we adjust the weights and transition func-
tion based not only on the current gradient, but also on what our previous
adjustment was - thus we have momentum in that direction! The idea behind
this is that it allows us to take bigger steps towards the minima while still
checking partway and correcting the direction if necessary. [Matlab, 2005]

Additionally, it is important to note that most algorithms employ some
form of randomization. This done in order to nudge the network in some
direction, which may allow it to find new (and better!) minima. This is often
done by simply allowing the initial weights to be set randomly, thus causing
the training to converge to different local minima. If there is considerable
variation in results and no way to determine the best, then the average of
such networks can be used as a predictive measure. [Grudic, 2006]

Finally, it is interesting to note that there are other error functions that
can be defined and used when training a network. This completely depends
on the applications, but they can do things such as penalize large weights,
or train on slopes in addition to values. [Grudic, 2006]

2.2.3 Problems with Training

However, it is important to note that training is not always perfect. One of
the main problems that can occur is when we overfit the data. As seen in Fig-
ure 2.2.3, we see how by matching our training data too closely we may end

Figure 5: It is possible to achieve a fit for the data which minimizes the
measurable error. However, we run the risk of overfitting. In this example
a simple linear fit is more appropriate.

up with something that does not simulate our system as effectively.[Gurney, 1997]

3 The Project

The purpose of this project was to learn about neural networks, but more
importantly to discuss the idea of how much information we really need to
learn. I chose to build a neural network that would predict the probability
of a student graduating. This is naturally a rather important concern, but
was also one for which I had no access to data. Thus, my intent was to train
the network by making a series of obvious observations, and seeing if this
was enough for it to successfully predict the success rate of a given student.

3.1 Setup

The network takes as input the answers to eight questions on a scale from 0 to
1. For each question a 0 means no/never /none, and a 1 means yes/always/all.
The questions are as follows;

e Are you a senior?

Did you turn in an application for graduation?

e Do you go to class?

Do you do your homework?

Do you drink?

Do you play video games?
e How many of this semester’s credits do you need to graduate?
e How many of this semester’s classes do you need to graduate?

Thus the network has 8 inputs, and a single output which predicts the
probability of graduation.

The topology of the network contains a singly hidden layer of twelve
nodes. While the rigorous data that I took was with this topology, it was
not the only one I tried. I first constructed the naive case with no hidden
layer. As expected, this did not allow for much flexibility, and the predictions
were rather crude. I ran the network with a hidden layer containing eight
nodes. Again, as expected this did not add much to the predictive power
because it does not allow for many correlations to be built between the
input information. However, it is interesting to point out that I also tried
the network with a hidden layer of fifteen nodes. Contrary to intuition,
this did not seem better than the twelve node network, and actually the
predictions varied even more widely. There seems to be a point for certain
networks where there is too much redundancy and the network itself becomes
more difficult to train. This seems to be what was happening here, so the
twelve node network became the logical choice to use for the remainder of
the project.

The network trains on all possible binary inputs. Because we must have
outputs to train, I used common senses to decide which of our “students”
should graduate. If either of the first two questions was a 0, they automat-
ically do not graduate because they either not a senior, or did not apply
for graduation, or both. Otherwise, if both of the last two questions are
0 they automatically graduate because they do not need any more credits
or classes. Of the four remaining questions if two or more were answered
“incorrectly” (i.e. I never go to class and am always drinking) then the
student does not graduate. Otherwise, they are home free. Naturally this
is a very large oversimplification of what it takes to graduate - but that is
the point! The goal is to see if these crude assumptions can train a network
that performs reasonably well.

3.2 Implementation

The code for this project was written in Matlab using the Neural Network
Toolbox. From poking around I found that Matlab had the most techniques

implemented, and allowed for a wide variety of networks. While the code
is short, there are many ways with which to request the same sequence of
events. This was the most efficient and relevant method I could find, and
will outline it here because it is all you need to know to create and train a
typical neural network in Matlab, and thus I think it is valuable information.

The network is created using a call to newff(X, N, F, T). Given z
input nodes, X is a 2 X n matrix where each row corresponds to an input
variable, and the columns describe the range for each one. Hence if X = [0
5], then I have a one input network where the input will be in the range
between 0 and 5. The next two inputs, N and F, are vectors whose length is
the number of hidden layers plus one. Each entry in N is the number of nodes
at that layer. The last entry is the number of outputs. Each entry in F is the
type of transition function used in that layer. The final input T determines
the type of training that will be used for the network.[Matlab, 2005]

The two types of transfer functions I used are tansig which is a hyper-
bolic tangent sigmoid function, and purelin which is a simple linear combi-
nation. The generic sigmoid function described earlier can be obtained using
logsig.[Matlab, 2005] My reasoning behind my choices was that tansig is
a bit flatter than the usual logsig, and this allows for a wider range of
inputs to have some form of impact on the result (as opposed to something
closer to a step function and is therefore “all or nothing”). My choice for
purelin to determine the output was because I wanted a wide range of pos-
sible outputs. The sigmoid functions would tend to give outputs near the
fringe of my 0-1 spectrum, while I wanted to be able to have people with
say a 62 percent chance of graduation.

For testing purposes I use two different kinds of training schemes. The
first is Matlab’s traingdx which is a gradient descent algorithm that uses
momentum and adaptive learning. The second training scheme is Matlab’s
trainlm which is a mixed algorithm that interpolates between the typi-
cal gradient descent and Gauss-Newton methods. This is the well known
Levenberg-Marquardt algorithm that is often used in practice because of
its fast rate of convergence.[Matlab, 2005, Wikipeia, 2006] In both cases the
goal was 0.01, with a maximum of 500 epochs. The results for both are
discussed in the following section.

3.3 Results

The verification data was taken from a total of 10 Harvey Mudd College
students, professors, and alumni. While I ran many more trials, this was
real data about real people, and thus the only appropriate way to measure

10

whether or not the network was behaving in a reasonable manner.

Because of randomization, different training sessions can actually result
in a different network because we may converge to different local minima.
Because I was seeing a good deal of variation it became inadequate to simply
find the prediction from a single network. Thus, I trained 100 networks on
the same data for each algorithm, and averaged the predictive result of the
verification data on each one. These averages along with the inputs and
standard deviations are found in Appendix A.

An interesting thing to note is that the the tainlm algorithm almost
always converged to the point where the error in the training data met the
0.01 goal. However, the traindgx algorithm rarely met this goal and most
often would run the 500 epochs and reach an error of about 0.1. However, the
average standard deviation for traingdx is 0.093 while the average standard
deviation for trainlm is 0.156! Thus, while it seems that the trainlm
algorithm is better, it in fact overfit the data and the more naive traingdx
algorithm outperformed it (in terms of consistency) in practice.

The real measure, however, has to be in the validation set which tells us
weather or not our predictions were valid. Because it is not the end of the
semester I do not know for sure whether or not the people in my training
sample are actually going to graduate. However, I can tell you that the four
bottommost (one of whom is a senior!) are not planning to graduate this
semester. Hopefully, everyone else will.

However, in general the predictions seem to be common-sense reasonable,
though a bit harsh. I tend to believe that most people will graduate with
the exception of extreme cases, but here we see more of a spread which
indicates who is most likely to graduate. This, however, is mostly because
the network is set up to give such a spread. As mentioned earlier, in order
to be able to detect more about how the network was functioning the output
used a simple linear combination instead of some kind of sigmoid function,
thus reducing the polarity of the outcomes.

The main issue, however, is my lack of real data. Not only do I not know
who is actually going to graduate, but I also only have data that people
have self-report. As any psychologist will tell you, this is not necessarily
an accurate portrayal (for better or worse!) of a subject’s true inclinations.
Thus, in order to truly determine if the basic observations are enough for a
network to truly learn, we must use real data as opposed to that which is
self-reported. However, if those results confirm what we see here, perhaps
we do not actually need much concrete information to learn!

If the brain truly works in a similar manner, this would mean that we
can learn by observing broad trends. This may not be the most accurate

11

form of learning - but it would be enough to function in society. While show-
ing that this sort of learning works in an artificial network proves nothing
about biology, it still raises some interesting psychological questions about
assumptions, bias, and prejudice that would be interesting to explore.

4 Future Work

Given more time I would have liked the opportunity to experiment more
in depth with the different kinds of transition and learning techniques and
develop a more formal rubric to determine weather or not the network is
effective. While some of it will be verified on May 14th, I would like to
have more concrete data with which to check how the network is behaving.
Additionally, I was only able to get a sample of 10. It would be great to get
many more people involved.

I think the most interesting correlation here goes back to the relationship
between artificial and biological neural networks. If we can learn artificially
by making basic logical assumptions, this seems to be more correlated to
the way our minds would actually work. In some cases we think we have
learned or can predict very complicated reactions, but how much data do we
really have? There is no one measuring the error in our mental conclusions
and then fine tuning them against a preset mold. Thus, in some ways, this
method of training seems more accurate in terms of simulating the way in
which people think. However, I do not know much about cognitive science,
but it would be interesting to look into that area a bit more, and see if such
theories are supported.

5 Acknowledgements

I would like to thank Professor Young for his fantastic Scientific Computing
class which gave me the background and confidence to tackle this problem.

Additionally, T would like to thank Susanna Ricco for suggesting the
book Neural Networks for Pattern Recognition, and providing me with the
information on neural networks for weather prediction.

Finally, I would like to thank those who volunteered to provide me with
test data as they bravely faced the possibility of a computer telling them
they would not walk in our graduation ceremony.

12

A Results

This table depicts the data taken from ten members of the Harvey Mudd
Community. This included seniors, non-seniors, alumni, and faculty. As you
can see from the responses, there is a fair amount of variation in the lifestyle
of the different people polled. The Average columns give the average output
given by 100 networks trained by the given algorithm, and the corresponding
StDev column gives the standard deviation thereoff.

As a reminder, the input answers the following questions on a 0 to 1
scale:

e Are you a senior?

e Did you turn in an application for graduation?

e Do you go to class?

e Do you do your homework?

e Do you drink?

e Do you play video games?

e How many of this semester’s credits do you need to graduate?

e How many of this semester’s classes do you need to graduate?

Input Average - gdx | StDev - gdx | Average - Im | StDev - Im
11 1 1 025 05 02 04 0.97660 0.09354 1.19261 0.37964
1 1 07 09 1 0 01 0.1 0.89322 0.11002 0.99731 0.18461
1 1 05 09 05 0 02 08 0.72577 0.10109 0.86449 0.16018
1 1 09 09 07 08 04 05 0.55853 0.08120 0.57916 0.18511
1 1 08 08 07 03 O 1 0.55818 0.07194 0.63446 0.14480
11 1 09 1 1 05 1 0.22879 0.12640 0.10163 0.14319
1 1 05 04 1 0.1 1 1 0.09064 0.13316 0.03885 0.12523
0 0 1 1 025 0 1 1 0.02420 0.06150 -0.02620 0.07427
0 0 1 0 0.5 0 0 0 -0.02271 0.06621 0.01622 0.09965
0 0 0 1 0 0 0 -0.04295 0.08666 -0.00248 0.06134

13

As you can see, both algorithms agreed mostly if not exactly on the
probability of graduation. More discussion of these results is given in Sec-
tion 3.3.

B Code

I wrote a main function which created a network, trained it, and predicted
the probability of you graduating given your input. I present the different
sections of the code below. All work is original.

B.1 Will You Graduate?

% will_you_graduate.m Elisa Celis

h

% This function predicts whether or not you will graduate!

h

% You must give it an input containing the answers to the folowing
% questions (if not yes-no, then a 1 indicates always, a O indicates never)
h

% are you a senior?

% did you submit an application for graduation?

% do you go to class?

% do you do your homework?

% do you drink?

% do you play video games?

% do you need your credits to graduate? (give percentage needed)

% do you need specific class to graduate? (give percentage)

h
function pgrad = will_you_graduate (input)
1 = length(input);

if 1 "=28
’The lenght of the input array should be 8.’
else
% Create the training set (will train on all possible binary inputs)
P = training_set(1l);
% Creat the appropriate responses to training set
% (note this is specific to our case)

14

T = training_output(1l);

% Set up the neural network - the inputs are as follows:
h
% 1. the ranges for the input (one column per input variable).
% 2. the number of nodes in a layer (one entry per layer).
% 3. the types of transition function (one entry per layer).
% 4. the type of training to be used.
net = newff([0 1; 01; 01; 01; 01; 01; O 1; O 1],
[12, 1], {’tansig’, ’purelin’},’trainlm’);

% Can replace with different training functions. Below are the ones I used:
T

% trainlm - gradient descent & newton’s method.

% traingdx - gradient descent w/ momentum and adaptive learning.

% Set up traning parameters, and train the network
net.trainParam.epochs = 500; net.trainParam.goal = 0.01; net =
train(net,P,T);

% Simulate the network on the given input
pgrad = sim(net,transpose(input));
end

B.2 Training Code

% Training_set.m Elisa Celis

h

% This function gives the set we will train on - in this case, all binary
% possibilities given n variables.

h

% function P = training_set(n);

h
function P = training_set(n)
if n==

P = [0, 1];
else

15

N = training_set(n-1);
P = [zeros(1l, 2°(n-1)) ones(l, 2" (n-1))
N N 1;
end
% training_output.m Elisa Celis

h

% This function gives the output we will train on. Not this function is
% very specific to our problem with 8 variables.

h

% function T = training_output(n);

h
function T = training_output(n)
P = training set(n); T = ones(l, 27n);

for (i = 1:2°n)
% If you never go to class
% OR never do your homework
% OR always drink
% OR always play video games

o L you probably will not graduate.

if ((1-P(3, 1)) + (1-P(4, 1)) + P(5, i) + P(6, i) >= 2)
T(i) = 0;

end

% However, if you do not need any more credits
% AND do not need any more classes

hoo you’ll probably still graduate.
if (P(7,i) == 0 && P(8, i) == 0)

T(i) = 1;
end

% However, if you are not a senior
% OR did not turn in your form

/2 you cannot graduate regardless.
if (P(1,i) == 0 || P(2, i) == 0)
T(i) = 0;
end
end

16

B.3 Testing Code

% grad_ttest.m Elisa Celis

h

% This function runs several trials of the will_you_graduate program on a
% single input in order to determine the consitency of a given response.

b
function [average, stdev] = grad_test(input)
num = 25; data = zeros(l, num); sum = 0.0;
for i = 1:num

data(i) = will_you_graduate(input);

sum = sum + data(i);
end

average S'LlIII/Ill.lIIl

stdev = 0; for i = 1:num
stdev = stdev + (average - data(i))"2;

end

stdev = sqrt(stdev/num)

17

References

[Bernacki and Wlodarczyk, 2006] Bernacki, M. and Wlodarczyk, P. (2006).
Backpropagation in neural networks. Available electronically at
galaxy.agh.edu.pl/ vlsi/Al/backp_t_en/backprop.html.

[Bishop, 1995] Bishop, C. (1995). Neural Networks for Pattern Recognition.
Oxford University Press.

[Grudic, 2006] Grudic, G. (2006). Neural networks. Available electronically
at www.cs.colorado.edu/ grudic.

[Gurney, 1997] Gurney, K. (1997). Neural nets. Available electronically at
www.shef.ac.uk/psychology /gurney /notes/index.html.

[Matlab, 2005] Matlab (2005). Helpfiles.

[StatSoft, 2004] StatSoft (2004). Available electronically at
www.statsoft.com/textbook/stneunet.html.

[Weisstein, 2006] Weisstein, E. (2006). Mathworld. Available electronically

at mathwolrd.wolfram.com.

[Wikipeia, 2006] Wikipeia (2006). Available electronically at
en.wikipedia.org.

18

