An Iterative Solver for the Diffusion Equation

Alan Davidson

adavidso@cs.hmc.edu

25 April 2006

An Iterative Solver for the Diffusion Equation

Alan Davidson

Problem Statemen

The Methods

The Diffusion/Heat Equation

$$u_t = a + D \cdot u_{xx}$$

- *u* is the concentration/temperature
- a is a source/sink
- D is a diffusion/thermal diffusivity constant
- t is time, x is space

An Iterative Solver for the Diffusion Equation

Alan Davidson

Problem Statement

The Methods

The Hitch

- For clinic, we needed arbitrary Dirichlet boundary conditions through the middle
- These BCs simply hold the concentration at a fixed amount
- Exact solution cannot be found easily

An Iterative Solver for the Diffusion Equation

Alan Davidson

Problem Statement

The Methods

The Solution!

- Use an iterative solver
- For clinic we actually used
 - The 3-D equation
 - The Gauss-Seidel method
 - The backwards Euler FDA
 - C++
- I wanted to try
 - 1, 2, or 3 dimensions
 - Dirichlet, Neumann, and Cauchy BCs
 - The Jacobi or SSOR methods
 - The backwards Euler FDA
 - Sparse matrices in Matlab

An Iterative Solver for the Diffusion Equation

Alan Davidson

Problem Statement

The Methods

Iterative Methods

We want to solve

$$A\vec{x} = \vec{b}$$

but we don't want to invert A (time constraints, etc). Divide up A so that

$$A = D + L + U$$

where

- D is diagonal
- L is lower triangular
- U is upper triangular

An Iterative Solver for the Diffusion Equation

Alan Davidson

Problem Statement

The Methods

The Jacobi Method

Pick $\vec{x}^{(0)}$ to be the initial guess at a solution. Now, define

$$\vec{x}^{(i+1)} = D^{-1} \cdot (-L - U) \cdot \vec{x}^{(i)} + D^{-1} \cdot \vec{b}$$

If $|\vec{x}^{(i+1)} - \vec{x}^{(i)}|$ isn't small enough, repeat.

An Iterative Solver for the Diffusion Equation

Alan Davidson

Problem Statement

The Methods

The Successive Over-Relaxation (SOR) Method

We will solve

$$\omega A \vec{x} = \omega \vec{b}$$

Noting that

$$\omega A = (D + \omega L) + (\omega U - (1 - \omega)D),$$

we now have that

$$\vec{x}^{(i+1)} = (D + \omega L)^{-1} \cdot \left((-\omega U + (1 - \omega)D)\vec{x}^{(i)} + \omega \vec{b} \right)$$

The backwards version is

$$\vec{x}^{(i+1)} = (D + \omega U)^{-1} \cdot \left((-\omega L + (1 - \omega)D)\vec{x}^{(i)} + \omega \vec{b} \right)$$

An Iterative Solver for the Diffusion Equation

Alan Davidson

Problem Statement

The Methods

The Symmetric Successive Over-Relaxation (SSOR) Method

We do one forwards SOR step followed by one backwards SOR step:

$$\vec{x}^{(i+1/2)} = (D + \omega L)^{-1} \cdot \left((-\omega U + (1 - \omega)D)\vec{x}^{(i)} + \omega \vec{b} \right)$$
$$\vec{x}^{(i+1)} = (D + \omega U)^{-1} \cdot \left((-\omega L + (1 - \omega)D)\vec{x}^{(i+1/2)} + \omega \vec{b} \right)$$

An Iterative Solver for the Diffusion Equation

Alan Davidson

Problem Statement

The Methods Progress So Far...

Progress So Far...

Slower than I expected

- 1-D case implemented for both Jacobi and SSOR methods with any Dirichlet BCs
- Neumann (and therefore Cauchy) BCs are not well defined in arbitrary locations, especially in a 1-D case
- Uses only sparse matrices
- Checks for stability

Oddly enough, the Jacobi method seems to converge more quickly than the SSOR!?

An Iterative Solver for the Diffusion Equation

Alan Davidson

Problem Statemen

The Methods

An Iterative Solver for the Diffusion Equation

Alan Davidson

Problem Statemen

The Methods

An Iterative Solver for the Diffusion Equation

Alan Davidson

Problem

The Methods

An Iterative Solver for the Diffusion Equation

Alan Davidson

Problem

The Methods

An Iterative Solver for the Diffusion Equation

Alan Davidson

Problem Statemer

The Methods

An Iterative Solver for the Diffusion Equation

Alan Davidson

Problem Statemer

The Methods

An Iterative Solver for the Diffusion Equation

Alan Davidson

Problem Statemer

The Method

An Iterative Solver for the Diffusion Equation

Alan Davidson

Problem Statemer

The Methods

References Used

An Iterative Solver for the Diffusion Equation

Alan Davidson

Problem Statemen

The Methods

Progress So Far...

Saad, Yousef. <u>Iterative Methods for Sparse Linear Systems</u> SIAM, 2000.

http://mathworld.wolfram.com

That's All, Folks!

An Iterative Solver for the Diffusion Equation

Alan Davidson

Problem Statemen

The Methods

Progress So Far...

Questions?