Perturbations of a Hanging Chain

Daniel Percival & Daniel Walton

The Problem

• Model small perturbations of a chain hanging by two ends.

Shape

A chain hanging by two ends has the shape of a catenary

Parameterization of a Catenary

• Use arc-length parameter s, with s=0 corresponding to the center of the catenary. The constant α determines the overall curvature of the catenary

$$x(s) = \alpha \sinh^{-1} \left(\frac{s}{\alpha}\right),$$
$$y(s) = \alpha \cosh \left(\sinh^{-1} \left(\frac{s}{\alpha}\right)\right)$$

- Our chain has arc length 2, so $-1 \le s \le 1$.
- Also, we assume that $\alpha = 1$.

Assumptions in our Model

- The chain will behave like a heavy, inextensible (non-stretching) rope.
- We will only consider perturbations of the chain from its resting state.
- Extremely high modes of motion will contribute negligibly to the motion of the chain.

The Governing Equations

- There is no motion in the x or z direction!
- The PDE which rules the system:

$$y_{tt} = g\left(y_s\sqrt{1+s^2}\right)_s, -1 \le s \le 1, t > 0$$

Subject to the following conditions:

$$y(1,t) = y(-1,t) = y_t(s,0) = 0$$

 $y(s,0) = f(s)$

The Governing Equations (Continued)

- Using separation of variables, this is an eigenvalue problem!
- The DE for S(s) determines the eigenvalues and eigenfunctions:

$$S_{ss} + \frac{sS_s}{(1+s^2)} + \frac{\lambda S}{\sqrt{1+s^2}} = 0$$
$$-1 \le s \le 1$$

Subject to:

$$S(-1) = S(1) = 0$$

• The DE for T(t) reduces to:

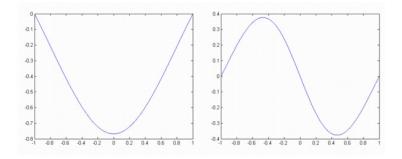
$$T(t) = B\cos\left(t\sqrt{g\lambda}\right)$$

Strategy for the Numeric Solution

- Find a few eigenfunctions and eigenvalues of S(s).
- Determine the B_n for each eigenvalue to meet the initial condition f(s).
- Animate the result!

Numerical Solutions for the Modes

 Using MATLAB's bvp4c command, we solved for the eigenfunctions, which represent the basic modes of chain motion.



The first two eigenfunctions, with corresponding $\lambda \approx 3,11$

The Motion of the Chain

MATLAB demo of results.

References:

- Yong, Darryl. "Strings, Chains, and Ropes", SIAM Review (to appear), 2006.
- Eric W. Weisstein. "Catenary." From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/Catenary.html

Thanks to:

- Darryl Yong, for a great deal of help and ideas.
- The prophet Daniel, the original member of team Dan.