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Introduction

In present-day society, immigration control and undocumented workers have constantly been
the center of social discussion. Debates have ranged from how undocumented workers help the
economy to how they disrupt the social hierarchy of the country. We attempt to shed some
light on the issue by using some mathematics to model how undocumented workers affect the
economy. More specifically, we represent the amount of money the government has, the amount
of money it spends on deporting undocumented workers, the country’s number of legal residents,
and its number of undocumented workers using a discrete dynamical system, and look at its
behavior over time.

Assumptions, Definitions, and Derivation

We begin with some definitions:
• Gn denotes the amount of money the government has at the end of the nth year.
• Xn denotes the amount of money the government will spend on deporting undocumented work-
ers during the n + 1st year. All that money will disappear by the end of the nth year.
• Ln denotes the country’s number of legal residents at the end of the nth year.
• Un denotes the country’s number of undocumented workers at the end of the nth year.

These are the four variables we will be examining for our model. We now list our assumptions
and derive the equations for the aforementioned variables.

Equations for Gn and Xn

• The only money the government spends every year is for deporting undocumented workers.
Hence, the government only spends Xn−1 during the nth year.
• Every year, every undocumented worker, except for those who arrived into the country or
will die in that year, contributes mU dollars to the government. The number of undocumented
workers who will die during the nth year is dUUn−1, where dU is a constant between 0 and 1.
As a result, the undocumented workers contribute mU (1− dU )Un−1 dollars during the nth year.
• Every year, every legal resident, except for those who were born, those who were legalized,
those who arrived in the country, or those who will die in that year, contributes mL dollars to the
government. If dLLn−1 legal residents will die during the nth year, where dL is also a constant
between 0 and 1, then the legal residents contribute mL(1− dL)Ln−1 during the nth year.
• During the nth year, the government plans to spend k dollars per undocumented worker in
the country at the start of that year; hence it wishes to spend kUn−1 dollars. However, if
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spending this amount results in the government’s money becoming negative at the end of the
nth year, then this amount is adjusted so that the government’s money is 0 at the end of the year.

In other words, let Gdesired = Gn−1 + mL(1− dL)Ln−1 + mU (1− dU )Un−1 − kUn−1 denote
the amount of money the government plans to spend. If Gdesired < 0, then

Xn−1 = mL(1− dL)Ln−1 + mU (1− dU )Un−1,

Gn = Gn−1 + mL(1− dL)Ln−1 + mU (1− dU )Un−1 −Xn−1

= 0.

Otherwise,

Xn−1 = kUn−1,

Gn = Gdesired.

Equation for Ln

• Any legal resident who gives birth to a child cannot die or leave the country in that same year.
Any undocumented worker who gives birth to a child cannot die or become legalized in that
same year.
• Any child of an undocumented worker is a legal resident.
• bL and bU represent the birth proportions for legal residents and undocumented workers re-
spectively every year; hence, there are bLLn−1 + bUUn−1 people born as legal residents during
the nth year.
• The proportion of undocumented workers that become legal residents every year is gU , so
gUUn− 1 undocumented workers become legal residents during the nth year.
• The number of people who enter the country as legal residents is a constant, nL.
• The number of legal residents who will leave the country is a proportion, lL. No one who will
leave the country can have a child or die in that same year. As a result, lLLn−1 legal residents
leave during the nth year.
Put A = Ln−1 + (bL − dL − lL)Ln−1 + nL + (gU + bU )Un−1. Then:

Ln =

{
A, if A > 0;
0, otherwise.

Equation for Un

• The number of people who enter the country as an undocumented worker is a constant, nU .
• There exists an efficacy constant, e, which denotes the number of undocumented workers
removed from the country per dollar spent. Hence, the number of undocumented workers removed
in the nth year is eXn−1.
Set B = −(gU + dU )Un−1 + nU − eXn−1. It follows that

Un =

{
B, of B > 0;
0, otherwise.
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How Much Should the Government Spend?

Now that the model has been derived, the natural question is how much the government should
spend for deporting each undocumented worker, or in other words, how the government should
pick k. We now examine the behavior of the system for different values of k, and see if there is
an optimal value.

Appendix A contains the constants and initial conditions we use for the model. We use Mat-
lab .m files for all the functions in this project; we first run quanprojectmath164 part1(k)
which takes in a value for k, and plots the Gn, Xn, Ln, and Un versus n from 0 to 70. Plots are
shown in Appendix B for various values of k. By the plots, when k = 0, 100, or 1000, it makes
sense that Un increases initially because the money spent is not sufficient to reduce the overall
number of undocumented workers. When k = 5000, a different trend occurs; the number of un-
documented workers decreases initially, since the amount of money the government is spending
is now enough. Also, notice that Un seems to approach a steady number as time increases; that
number decreases as k increases.

What is interesting, however, is that when k increases, Un tends to have more oscillations
before approaching a steady-state value. In fact, Figure 1 shows that for k = 19500, the oscilla-
tions are huge, and the steady-state is reached for a value of n much larger than 70. A logical
question to ask would be if there existed a large enough value for k where oscillations would
continue on forever.
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Figure 1: Model Behavior when k = 19500
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Figure 2: Model Behavior when k = 20000

The answer is yes; when k = 20000, oscillations in Un continue forever, as demonstrated
by Figure 2. (This is confirmed by Figure 20 in Appendix B which contains a plot of Un ver-
sus n from 0 to 1000). An intuitive explanation for this infinite oscillatory behavior is because
k = 20000 is enough to immediately remove all undocumented workers; however, when there
are no undocumented workers, the government spends no money, and as a result, the number of
undocumented workers rises again. This pattern continues forever. Notice also that increasing k
past 20000 doesn’t decrease the average value of Un; Un still oscillates between the same values,
as demonstrated by Figure 21, which looks at the system’s behavior for k = 40000. By this ex-
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ample, the government should never spend more money than the minimal value of k that causes
the infinite oscillation of Un.

Let n∗ be the last value of n for the plots; here n∗ = 70. We proceed to plot Gn∗ and
Un∗ for different values of k, and see if there an optimal value of k can be obtained this way.
Using plot K G U(lowerlimit,upperlimit), where lowerlimit and upperlimit dictate the
respective lower and upper ranges for k to plot Gn∗ and Un∗, Figure 3 shows that increasing k
(for 0 ≤ k ≤ 10000) decreases the final Gn and Un with diminishing returns:
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Figure 3: Gn∗ and Un∗ vs n, 0 ≤ n ≤ 10000

We also run the same program for 10000 ≤ k ≤ 25000. Since the number of undocumented
workers, however, oscillates between 0 and some fixed constant for the larger values of k on this
range, we create plots for Gn∗ and Un∗, and for Gn∗−1 and Un∗−1.

1 1.5 2 2.5

x 10
4

3.175

3.176

3.177

3.178
x 10

13

k

G
n*

1 1.5 2 2.5

x 10
4

1.5

2

2.5

3
x 10

4

k

U
n*

Figure 4: Gn∗, Un∗ for 10000 ≤ k ≤ 25000
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Figure 5: Gn∗−1, Un∗−1 for 10000 ≤ k ≤ 25000

The plots indicate that increasing k decreases the final number of undocumented workers, but
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hurts the economy as well. There is no clear optimal value of k that maximizes Gn∗ and minimizes
Un∗. The only thing that is obvious is that the government should never pick a value greater
than the minimum k that results in the infinite oscillation, for the number of undocumented
workers oscillate between 0 and the same constant for all those values. As a result, the value of k
that should be chosen depends on whether the government wants the number of undocumented
workers to quickly approach a higher steady state, or for it to oscillate for a long time, then
approach a steady state, even though the steady state of the latter is lower. It also depends on
whether the government is willing to spend the money for this tradeoff.

Expanding the Model

Perhaps no clear value for k could be determined because of some simplifying assumptions of the
model. First of all, the number of legal residents that entered the country was constant, and the
general behavior of Ln remained the same for all values of k. It would make more sense if the
number of legal residents that entered was somehow proportional to the economy; in fact, if the
economy was poor, legal residents could even leave the country as a result. We now expand and
revise the Ln equation to reflect this. Let

cn =


√

Gn/G0, if Gn ≥ G0;
−

√
G0/Gn, if 1 ∗ 10−2 < Gn < G0;

−
√

G0/10−2, otherwise

denote the proportion of people that enter or exit as legal residents during the nth year based on
the economy at the start of the nth year compared to the initial economy. Note that the 10−2 is
the smallest non-zero value for Gn, and has units of dollars. It merely serves as a lower bound
to avoid division by 0 if G0 = 0. Also assume that no legal resident who leaves can have a child
or die in that same year. Put C = Ln−1 + (bL − dL − lL)Ln−1 + cn−1nL + (gU + bU )Un−1. Then

Ln =

{
C, if C > 0;
0, otherwise.

Another simplifying assumption was the number of undocumented workers was linear with
the amount of money spent. However, as a rule of economics, the amount spent should follow
the law of diminishing returns; every extra dollar spent should really decrease Un by a smaller
amount. Let v be a constant between 0 and .35 inclusive, and define

en = e/(Xn)v

to be the new efficacy function that determines the number of undocumented workers removed
per dollar spent; therefore, every extra dollar spent reduces the efficacy. e, which will take on
the same value as in the previous section, will now denote the number of undocumented workers
removed for every 1/(1− v)th root of a dollar spent. Put D = −(gU + dU )Un−1 + nU − enXn−1;
the Un equation is now

Un =

{
D, if D > 0;
0, otherwise.

We now proceed to re-examine the behavior of the system for different values of k, and for
values of v as well.
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Spending Money as a Function of Efficacy

We begin by using a function quanprojectmath164 part2(k,v) that plots the behavior of the
system by taking values for k and v. After trying some sample values, we find that many values
of k that caused oscillations for v = 0 barely cause any oscillations for higher values of v. For
example, when v = .05, k = 20000 barely even creates an oscillation, as shown in Figure 25 in
Appendix B, even though it led to an infinite oscillation when v was 0. By the time v = .15,
k = 20000 isn’t even sufficient to cause a decrease in the number of undocumented workers.

After some more experimentation, for v < .3, the system behaves exactly the same way as
under the old model, except that much higher values of k are needed to cause oscillations for
Un. (More examples plots for v = .05 are shown in Appendix B). We use a function plot k v()
which, for v = 0, .05, .10, .15, .20, .25 and .3, determines the minimum k such that the infinite
oscillation is created. The function does this beginning with a number less than the minimum
k, which was found by experimentation, and increments k until both Un∗ and Un∗−2 or Un∗−1

and Un∗−3 equal 0. Running plot k v() creates Figure 6.
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Figure 6: Minimum k versus v

It is not difficult to see that as v increases, the minimum k necessary to force an infinite oscil-
lation increases somewhat exponentially; hence poor efficacy costs the government vast amounts
very quickly. Now, the insightful reader may wonder why we didn’t write the function to in-
clude v = .35; it is because that there is no value of k that will create an infinite oscilla-
tion, as we demonstrate by running quanprojectmath164 part2(k,v) with k = 2381770 and
k = 2381870, both for v = .35. The former produces Figure 7, while the latter reveals Figure 8.

What is shocking about Figures 7 and 8 is that k = 2381770 produces only slight oscillations,
then a steady state, while increasing k by only 100 leads to a sudden collapse in the economy.
In addition, the collapse forces all the legal residents to leave the country, and drastically in-
creases the number of undocumented workers because there is no money avaiable to deport them.

As a result, large values of v imply that the only option the government can exercise is to
induce initial oscillations for the number of undocumented workers before that number quickly
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Figure 7: Model Behavior when k = 2381770
and v = .35

0 20 40 60 80
0

5

10

15
x 10

11

n

G
n

0 20 40 60 80
0

5

10

15
x 10

10

n

X
n

0 20 40 60 80
0

5

10

15
x 10

6

n

L n

0 20 40 60 80
0

2

4

6
x 10

5

n

U
n

Figure 8: Model Behavior when k = 2381870
and v = .35

settles into a steady state if it wishes to preserve its economy. This, however, is not necesarily
a negative thing if the government wishes to quickly settle Un into a steady state anyways; this
merely means that the number of options for the government is severly reduced, and implies that
a slight mistake can lead to its economical collapse.

One Last Revision

One could argue that the last plot, however, is unrealistic with respect to the behavior of Un.
The last model states that legal residents leave when Gn is less than G0; the same argument
could be made for undocumented workers. Using the same definition of cn as in the previous
section, and letting eU represent a constant proportion of the undocumented workers that leave
as a result of poor economy, we define

E =

{
−(gU + dU )Un−1 + nU − enXn−1, if cn > 0;
−(gU + dU )Un−1 + nU − enXn−1 + cneU , otherwise.

We can now revise Un to be

Un =

{
E, if E > 0;
0, otherwise.

Again, we assume that no undocumented workers who leave the country will die, have a child,
or legalize in that same year.

Is there a Change in the Behavior?

We begin by seeing if there is a change in the behavior for k = 2381870 when v = .35. We use
quanprojectmath164 part3(k,v) to create Figure 9.

Figure 9 shows that the economy no longer collapses. An intuitive reason is that the economy
first declines due to a huge spending; this drop is sufficient to force many undocumented workers
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Figure 9: Model behavior when k = 2381870, v = .35

to leave. As a result, the amount spent on fighting the remaining undocumented workers is much
smaller and not large enough to hurt the economy, leading to a recovery instead. The insightful
reader will ask if this is always the case, no matter what the value of k is. The answer is no,
as demonstrated with k = 2664170 and k = 2664270 when v is again .35. When k= 2664170,
oscillations occur with Un before it levels off as shown in Figure 10, like in the previous models.
However, in Figure 11, when k = 2664270, the same type of collapse occurs, except this time,
Un decreases to 0 as well.
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Figure 10: Model behavior when k =
2664170, v = .35
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Figure 11: Model behavior when k =
2664270, v = .35

These plots, therefore, indicate that this model exhibits the same type of behavior as the
previous one, except that a higher value of k is required to force an economic collapse. In
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addition, when the economy collapses, both the legal residents and undocumented workers leave,
leaving the country to be an unpopulated piece of land. Therefore, if the government isn’t careful
with how it spends it money at large levels, it can very easily destroy the very entity of its own
country.

Conclusion and Implications

Even after revising the model twice, there is no clear answer for how much the government should
spend to deport undocumented workers. The answer mostly depends on whether the government
wants to have a lower average value of undocumented workers, even though that takes more
money, time, and oscillation in the undocumented worker population to accomplish, or a higher
constant number of undocumented workers that is achieved more quickly and smoothly. What
the models do tell is that when efficacy is high (for low values of v), the government has the
option of choosing to fulfill either of the aforementioned goals. However, when efficacy decreases,
the amount of money the government must spend in deporting undocumented workers increases
drastically, and for very poor levels of efficacy, the government can only settle for the latter goal
if it wishes to preserve its economy. Therefore, even though the models don’t provide one grand
solution that applies for every case, they do give a very clear indication of what the government
should never spend and provide some informative guidance depending on its goals.
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Appendix A - Constants and Initial Conditions

• G0 = 1.308608 ∗ 1012 dollars
• L0 = 1.1271743 ∗ 107 legal residents
• U0 = 5.6488 ∗ 104 undocumented workers
• mL = 6815 dollars contributed per legal resident
• mU = 1976 dollars contributed per undocumented worker
• bL = .0286 - birth proportion for legal residents
• bU = .07 - birth proportion for undocumented workers
• dL = .03938 - death proportion for legal residents
• dU = .02 - death proportion for undocumented workers
• gU = .0235 - legalization proportion for undocumented workers
• nL = 1.12 ∗ 106 - number of legal residents that enter per year
• nU = 3.00 ∗ 104 - number of undocumented workers that enter per year
• e = 1 ∗ 10−4 - number of undocumented workers deported per dollar spend
• eU = 3 ∗ 103 - scaling number of undocumented workers who leave when the economy is poor
(final model only)
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Appendix B - Figures
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Figure 12: Model 1, k = 0
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Figure 13: Model 1, k = 100
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Figure 14: Model 1, k = 1000
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Figure 15: Model 1, k = 5000
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Figure 16: Model 1, k = 10000
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Figure 17: Model 1, k = 14000

0 20 40 60 80
0

1

2

3

4
x 10

13

n

G
n

0 20 40 60 80
0

5

10

15
x 10

8

n

X
n

0 20 40 60 80
0

5

10

15
x 10

7

n

L n

0 20 40 60 80
0

2

4

6
x 10

4

n

U
n

Figure 18: Model 1, k = 19500
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Figure 19: Model 1, k = 20000
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Figure 20: Model 1, k = 20000, 0 ≤ n ≤ 100
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Figure 21: Model 1, k = 40000
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Figure 22: Gn∗, Un∗ for 0 ≤ k ≤ 10000
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Figure 23: Gn∗, Un∗ for 10000 ≤ k ≤ 25000
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Figure 24: Gn∗−1, Un∗−1 for 10000 ≤ k ≤ 25000
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Figure 25: Model 2, k = 20000, v = .05
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Figure 26: Model 2, k = 20000, v = .10
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Figure 27: Model 2, k = 20000, v = .15
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Figure 28: Model 2, k = 25050, v = .05
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Figure 29: Model 2, k = 29050, v = .05

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

2

4

6

8

10

12

14
x 10

5

v

G
ov

er
nm

en
t s

ho
ul

d 
pi

ck
 n

o 
m

or
e 

th
an

 th
is

 k

Figure 30: Minimum k required for oscillation of
Un versus v
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Figure 31: Model 2, k = 2381770, v = .35
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Figure 32: Model 2, k = 2381870, v = .35
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Figure 33: Model 3, k = 2381870, v = .35
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Figure 34: Model 3, k = 2664170, v = .35
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Figure 35: Model 3, k = 2664270, v = .35
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Appendix C - Matlab Code

% quanprojectmath164_part1(k).m
% This takes k as an input; k represents the amount of money
% the government wishes to spend per undocumented worker at the
% start of every year. This is for the original model.

% Written by Eugene Quan

function data = quanprojectmath164_part1(k)

mL = 6815; % Amount of money each legal resident contributes
mU = 1976; % Amount of money each undocumented worker contributes
bU = .0286; % Birth proportion for undocumented workers
bL = .07; % Birth proportion for legal residents
dL = .03938;% Death proportion for legal residents
gU = .0235; % Legalization proportio for undocumented workers
dU = .02; % Death proportion for undocumented workers
lL = .02; % Leave proportion for legal residents
nL = 1.12*10^(6); % Number of legal residents who enter per year
nU = 3*10^(4); % Number of undocumented workers who enter per year
e = 1*10^(-4); % Efficacy constant

% Initial conditions for amount of money, number of legal residents,
% and number of undocumented workers.
initialG = 1.308608*10^(12); %G_0
initialL = 1.1271743*10^(7); %L_0
initialU = 5.6488*10^(4); %U_0

G = initialG;
L = initialL;
U = initialU;

% We start at t = 0.
initialT = 0;

% Used to store the values of the variables at the start of every year.
Gvector = [initialG];
Lvector = [initialL];
Uvector = [initialU];
Tvector = [initialT];
Xvector = [];

% We iterate for every year.
for t=(initialT + 1):70
% How much the government plans to spend...
newX = k*U;
% and how that will affect the economy.
newG = G + mL*(1-dL)*L + mU*(1-dU)*U - newX;
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if(newG < 0) % If planned spending will produce a deficit
X = G + mL*(1-dL)*L + mU*(1-dU)*U; %Spend maximum amount of money allowed
G = 0; % Economy is now zero

else
X = newX; % Otherwise, spend planned amount
G = newG; % And gets G_n accordingly.

end

% Potential L_n. If it’s negative, then force it to 0.
newL = (bL - dL - lL)*L + L + nL +(bU + gU)*U;
if(newL <=0)

L = 0;
else

L = newL;
end

% Potential U_n. If it’s negative, then force it to 0.
newU = U -(gU + dU)*U + nU - e*X; %gets I(t)
if(newU <= 0)

U = 0;
else

U = newU;
end

% Saves the value of the variables into the vector for this particular
% year.
Gvector = [Gvector G];
Lvector = [Lvector L];
Uvector = [Uvector U];
Xvector = [Xvector X];
Tvector = [Tvector t];
end

% This to get the final value of X, since X is behind by one
% in indexing.
finalX = k*U;
finalG = G + mL*(1-dL)*L + mU*(1-dU)*U - finalX;
if(finalG <= 0)

X = G + mL*(1-dL)*L + mU*(1-dU)*U
else

X = finalX;
end
Xvector = [Xvector X];

% Returns the final set of values for every year.
data = [Tvector’ Gvector’ Xvector’ Lvector’ Uvector’];

% Plots everything.

19



figure(1)
clf
subplot(2,2,1)
plot(Tvector,Gvector)
xlabel(’n’)
ylabel(’G_n’)

subplot(2,2,2)
plot(Tvector,Xvector)
xlabel(’n’)
ylabel(’X_n’)

subplot(2,2,3)
plot(Tvector,Lvector)
xlabel(’n’)
ylabel(’L_n’)

subplot(2,2,4)
plot(Tvector,Uvector)
xlabel(’n’)
ylabel(’U_n’)
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% quanprojectmath164_part2(k,v).m
% This takes k and v as inputs; k represents the amount of money
% the government wishes to spend per undocumented worker at the
% start of every year. v is used in the efficacy function.
% This is for the second model.

% Written by Eugene Quan

function data = quanprojectmath164_part2(k,v)

mL = 6815; % Amount of money each legal resident contributes
mU = 1976; % Amount of money each undocumented worker contributes
bU = .0286; % Birth proportion for undocumented workers
bL = .07; % Birth proportion for legal residents
dL = .03938;% Death proportion for legal residents
gU = .0235; % Legalization proportio for undocumented workers
dU = .02; % Death proportion for undocumented workers
lL = .02; % Leave proportion for legal residents
nL = 1.12*10^(6); % Number of legal residents who enter per year
nU = 3*10^(4); % Number of undocumented workers who enter per year
c = 1*10^(-4); % Constant used in calculating efficacy.

% Initial conditions for amount of money, number of legal residents,
% and number of undocumented workers.
initialG = 1.308608*10^(12); %G_0
initialL = 1.1271743*10^(7); %L_0
initialU = 5.6488*10^(4); %U_0

G = initialG;
L = initialL;
U = initialU;

% We start at t = 0.
initialT = 0;

% Used to store the values of the variables at the start of every year.
Gvector = [initialG];
Lvector = [initialL];
Uvector = [initialU];
Tvector = [initialT];
Xvector = [];
% We iterate for every year.
for t=(initialT + 1):70
% How much the government plans to spend...
newX = k*U;
% and how that will affect the economy.
newG = G + mL*(1-dL)*L + mU*(1-dU)*U - newX;
if(newG < 0) % If planned spending will produce a deficit

X = G + mL*(1-dL)*L + mU*(1-dU)*U; %Spend maximum amount of money allowed
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G = 0; % Economy is now zero
else

X = newX; % Otherwise, spend planned amount
G = newG; % And gets G_n accordingly.

end

% This proportion is used for the legal residents entering/leaving
% based on the status of the economy.
if(G < initialG)

if(G < 10^(-2))
changingProportion = -sqrt(initialG*10^(2));

else
changingProportion = -sqrt(initialG/G);

end
else

changingProportion = sqrt(G/initialG);
end

% Potential L_n. If it’s negative, then force it to 0.
newL = (bL - dL - lL)*L + L + nL*changingProportion +(bU + gU)*U;
if(newL <=0)

L = 0;
else

L = newL;
end

% Efficacy function.
e = c*k^(-v);
% Potential U_n. If it’s negative, then force it to 0.
newU = U -(gU + dU)*U + nU - e*X; %gets I(t)
if(newU <= 0)

U = 0;
else

U = newU;
end

% Saves the value of the variables into the vector for this particular
% year.
Gvector = [Gvector G];
Lvector = [Lvector L];
Uvector = [Uvector U];
Xvector = [Xvector X];
Tvector = [Tvector t];
end

% This to get the final value of X, since X is behind by one
% in indexing.
finalX = k*U;
finalG = G + mL*(1-dL)*L + mU*(1-dU)*U - finalX;
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if(finalG <= 0)
X = G + mL*(1-dL)*L + mU*(1-dU)*U

else
X = finalX;

end
Xvector = [Xvector X];

% Returns the final set of values for every year.
data = [Tvector’ Gvector’ Xvector’ Lvector’ Uvector’];

% Plots everything.
figure(1)
clf
subplot(2,2,1)
plot(Tvector,Gvector)
xlabel(’n’)
ylabel(’G_n’)

subplot(2,2,2)
plot(Tvector,Xvector)
xlabel(’n’)
ylabel(’X_n’)

subplot(2,2,3)
plot(Tvector,Lvector)
xlabel(’n’)
ylabel(’L_n’)

subplot(2,2,4)
plot(Tvector,Uvector)
xlabel(’n’)
ylabel(’U_n’)
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% quanprojectmath164_part3(k,v).m
% This takes k and v as inputs; k represents the amount of money
% the government wishes to spend per undocumented worker at the
% start of every year. v is used in the efficacy function.
% This is for the final model.

% Written by Eugene Quan

function data = quanprojectmath164_part1(k,v)

mL = 6815; % Amount of money each legal resident contributes
mU = 1976; % Amount of money each undocumented worker contributes
bU = .0286; % Birth proportion for undocumented workers
bL = .07; % Birth proportion for legal residents
dL = .03938;% Death proportion for legal residents
gU = .0235; % Legalization proportio for undocumented workers
dU = .02; % Death proportion for undocumented workers
lL = .02; % Leave proportion for legal residents
nL = 1.12*10^(6); % Number of legal residents who enter per year
nU = 3*10^(4); % Number of undocumented workers who enter per year
c = 1*10^(-4); % Constant used in calculating efficacy.
eU = 3*10^(3); % Number used in proportion of undocumented workers

% who leave due to poor economy.

% Initial conditions for amount of money, number of legal residents,
% and number of undocumented workers.
initialG = 1.308608*10^(12); %G_0
initialL = 1.1271743*10^(7); %L_0
initialU = 5.6488*10^(4); %U_0

G = initialG;
L = initialL;
U = initialU;

% We start at t = 0.
initialT = 0;

% Used to store the values of the variables at the start of every year.
Gvector = [initialG];
Lvector = [initialL];
Uvector = [initialU];
Tvector = [initialT];
Xvector = [];
% We iterate for every year.
for t=(initialT + 1):70
% How much the government plans to spend...
newX = k*U;
% and how that will affect the economy.
newG = G + mL*(1-dL)*L + mU*(1-dU)*U - newX;
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if(newG < 0) % If planned spending will produce a deficit
X = G + mL*(1-dL)*L + mU*(1-dU)*U; %Spend maximum amount of money allowed
G = 0; % Economy is now zero

else
X = newX; % Otherwise, spend planned amount
G = newG; % And gets G_n accordingly.

end

% This proportion is used for the legal residents entering/leaving
% based on the status of the economy.
if(G < initialG)

if(G < 10^(-2))
changingProportion = -sqrt(initialG*10^(2));

else
changingProportion = -sqrt(initialG/G);

end
else

changingProportion = sqrt(G/initialG);
end

% Potential L_n. If it’s negative, then force it to 0.
newL = (bL - dL - lL)*L + L + nL*changingProportion +(bU + gU)*U;
if(newL <=0)

L = 0;
else

L = newL;
end

% Efficacy function.
e = c*k^(-v);
% Potential U_n.
newU = U -(gU + dU)*U + nU - e*X;
% If the economy is deproving, then there are some undocumented workers
% who will chose to leave, which edits the potential U_n.
if(changingProportion < 0)

newU = newU + eU*changingProportion;
end

%If U_n < 0, then force U_n = 0.
if(newU <= 0)

U = 0;
else

U = newU;
end

% Saves the value of the variables into the vector for this particular
% year.
Gvector = [Gvector G];
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Lvector = [Lvector L];
Uvector = [Uvector U];
Xvector = [Xvector X];
Tvector = [Tvector t];
end

% This to get the final value of X, since X is behind by one
% in indexing.
finalX = k*U;
finalG = G + mL*(1-dL)*L + mU*(1-dU)*U - finalX;
if(finalG <= 0)

X = G + mL*(1-dL)*L + mU*(1-dU)*U
else

X = finalX;
end
Xvector = [Xvector X];

% Returns the final set of values for every year.
data = [Tvector’ Gvector’ Xvector’ Lvector’ Uvector’];

% Plots everything.
figure(1)
clf
subplot(2,2,1)
plot(Tvector,Gvector)
xlabel(’n’)
ylabel(’G_n’)

subplot(2,2,2)
plot(Tvector,Xvector)
xlabel(’n’)
ylabel(’X_n’)

subplot(2,2,3)
plot(Tvector,Lvector)
xlabel(’n’)
ylabel(’L_n’)

subplot(2,2,4)
plot(Tvector,Uvector)
xlabel(’n’)
ylabel(’U_n’)
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% plot_k_G_U_part1(lowerk, upperk).m
% This takes in a lower and upper limit for k, and for all k in this range,
% it gets G_n* and U_n*. It then plots G_n* and U_n* versus k.
function plot_k_G_U_part1(lowerk, upperk)

% Written by Eugene Quan

% Used to store the data.
kvector = [];
Gvector = [];
Uvector = [];

for k=lowerk:upperk
data = quanprojectmath164_part1(k); %Gets the data for the system
[m,n] = size(data);
finalG = data(m,2); %Gets G_n* - change m to m-1 to get G_(n*-1)
finalU = data(m,5); %Gets U_n* - change m to mel to get U_(n*-1)
kvector = [kvector k];
Gvector = [Gvector finalG];
Uvector = [Uvector finalU];

end

% Makes the plots.
figure(1)
clf
subplot(2,1,1)
plot(kvector,Gvector)
xlabel(’k’)
ylabel(’G_n_*’)

subplot(2,1,2)
plot(kvector,Uvector)
xlabel(’k’)
ylabel(’U_n_*’)
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% plot_k_v.m
% No inputs. For v = 0, .05, .1, .15, .2, .25, and .3, this finds the
% minimum k that causes the infinite oscillation for U_n, for the
% second model.

% Written by Eugene Quan

% Used to store the data.
kvector = [];
vvector = [];

% j is v*10^(2). Used for precision.
j = 0;
v = j*10^(-2);

% Starting guess for v = 0. Starting guesses are provided to speed up
% runtime.
k = 19500;
% While v<=.3.
while(j <= 30)
k = k + 1;

data = quanprojectmath164_part2(k,v);
[m,n] = size(data);
% If the last and third from last values of U_n, or
% second from last and fourth from last values of U_n are 0,
% we store that value of k as the minimum k.
A = (data(m,5) == 0) && (data(m-2,5) == 0);
B = (data(m-1, 5) == 0) && (data(m-3,5) == 0);
if(A) || (B)

kvector = [kvector k];
vvector = [vvector v];

% This increments v by .05. Again, starting guesses are provided
% to speed up runtime.
switch j

case{0}
k = 32800;

case{5}
k = 58600;

case{10}
k = 111800;

case{15}
k = 231300;

case{20}
k = 526500;

case{25}
k = 1351000;

end
j = j + 5;
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v = j*10^(-2);

end
end

% Makes the plot.
figure(1)
clf
plot(vvector,kvector)
xlabel(’v’)
ylabel(’Government should pick no more than this k’)
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