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Small particles can interact with light in non-intuitive ways, scattering much less 
light than expected at specific angles, or allowing light to resonate within the particle’s 
structure. Predicting these interactions is important to the understanding of global 
warming, the effects of intergalactic dust particles, and the technology for roadside 
emissions monitoring. To predict light’s interaction with a particle, one would ideally 
solve Maxwell’s equations with boundary conditions specified at the surface of the 
particle. However, the geometry of many types of small particles is too complex for an 
analytical treatment. 

Soot particles, aggregates of many small carbon spheres, are particularly ugly yet 
important to understand. Many numerical models have been developed to try to 
understand light’s interaction with soot particles, and not all produce results that 
agree [2]. One model, the discrete-dipole approximation (DDA) [1], takes an innovative 
approach. DDA discretizes space by replacing the volume of the particle with a lattice of 
points, and each point is assigned a polarizability, α. The electric field of the incident 
light, Einc, creates an electric dipole at each point, with strength p proportional to its 
value of α.  

α=p E   (1) 
If the lattice points coincide with the atoms within the particle, the DDA 

qualitatively takes on extra physical significance. In an external electric field, an atomic 
nucleus is displaced slightly from the center of the electron cloud, producing a dipole. In 
the classical picture, a soot particle truly is a lattice of polarizable atoms. Furthermore, 
the atomic polarizabilities of various elements have been experimentally measured and 
tabulated [3, p161]. 

Once a dipole is produced, the dipole creates its own electric field. For an ideal 
(non-physical) dipole at the origin, the electric field at r is given by [3, p155] 
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where r̂ is the unit vector in the direction of r. This electric field is plotted in Figure 1. 
 

 
Figure 1: The electric field lines produced by an ideal dipole1 

 



The electric field produced by each dipole now contributes to the polarizations of 
its neighbors. Considering all N dipoles in the lattice, the polarization pi of the ith lattice 
point (at ri) is proportional to the sum of all the electric field contributions. 
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where ,dip kE is the electric field produced by the kth dipole (located at rk). Substituting 
from (2) and rearranging into a system of linear equations gives 

inc=Ap E   (3) 
The jth, kth element of the N-by-N matrix A can be defined by  
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where I is the identity matrix, rjk is the vector from the jth dipole to the kth dipole, or 
(rj - rk), and rjk is the magnitude of rjk. Each element of A is therefore a 3-by-3 matrix. 
Notice that the field from the incident light Einc can be a function of space; for a plane 
wave of light with wavenumber k, frequency ω/2π, and magnitude E0,   
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Finding the polarizations of each dipole, and the corresponding fields they produce, then 
becomes a matter of solving the system of equations (3).  

 
  Matlab was the tool I chose to implement this model and solve the system of 
equations. Most important in the decision was the convenience of debugging in Matlab’s 
environment, which I found useful when trying to interpret the model from my 
references. Moreover, Matlab’s convenient system of equations solver, familiar 
visualizations, and portable 3D figures made the software package desirable. 

To construct a lattice of points representative of a soot particle, the program 
discretizes the space around each carbon sphere. The best positioning for the lattice 
points to model a sphere is still an open question [1]. There may be an advantage in 
placing more dipoles around the surface of the sphere, where non-uniformities in 
polarizations are greatest. However, new computational methods for solving the problem 
require that the dipoles lie on a regular rectangular lattice. This program opts for a cubic 
lattice. Dipoles that lie within the sphere are assigned a polarizability of 0.1, and dipoles 
outside the sphere are assigned (approximately) 0 polarizability.  

I first validated the program using simple cases, first with a single dipole in an 
incident field, then with several interacting dipoles. I next calculated the dipole 
configuration of a sphere (diameter 1) within a cubic grid, 7 dipoles on a side. In this 
case, a plane wave of light (k = 0.2) is incident from the negative x-direction with 
polarization in the vertical direction and instantaneous electric field at the origin in the 
positive z-direction. The result is displayed in Figure 2. 

 



 
Figure 2: The dipole moments within a 3D sphere, induced by light of 

wavelength much longer than the diameter of the sphere. The blue circles are the 
locations of the lattice points. The length of the black lines represent the magnitude of the 

dipole moments with the red cross signifying the positive direction. 
 
Next, I was able to reproduce the behaviors described in reference 4. Taking a 

cross section from the y-z plane of the sphere of Figure 2, I obtain the result shown in 
Figure 3. To reproduce the behavior, I chose α to be .0001 - the curving behavior of the 
dipoles becomes more pronounced as α increases. For example, when α = .01, each 
sequential dipole essentially cancels the nearby incident field on its own and influences 
neighboring dipoles to flip entirely. This is shown in Figure 4. As a result, places of zero 
electric field (as evidenced by the zero dipole moments) result on the inside of the sphere. 

Finally, I calculated the dipole configuration for particles made of multiple 
spheres. (Figure 5) I found that, in general, dipoles with more neighbors were less likely 
to become polarized away from the vertical. Therefore, the spheres farthest out on the 
boundaries of the soot particle showed the most erratic polarization behaviors. The 
largest calculations involved eight spheres, each represented by 216 dipoles. 

 

 
Image from reference 4. 

 
Figure 3: The result at right (polarizability about .0001) reproduces the behavior reported by Draine. The 
dipoles closest to the surface are deviated inward a small amount. This results from the aggregate electric 

field produced by the large number of interior dipoles. 
 



 

 
Figure 4: The behavior seen in Figure 3 becomes more pronounced as α grows - 

until some dipole moments are entirely rotated. The field is zero at the center of the sphere. 
 

 
 
 

 
Figure 5: The polarization vectors of dipoles in a soot particle of four touching 

carbon spheres. Each sphere is represented by a cube, five dipoles on a side. As 
compared to the seven-by-seven case, there are less dipoles to represent each sphere, and 
α must be raised to produce a noticeable amount of curving. 
 
 
 
 
 



To go further, after having solved for the dipole configuration in a given soot 
particle, I calculated the scattered electric field. Far away from the particle, the scattered 
field is given by [1] 
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where r̂ is the direction of the detector and I is again the identity matrix. The field 
scattered from a small soot particle is shown in Figure 5. The scattered field is shown to 
have a minimum in the direction of incident light polarization. This is an expected result 
from scattering theory for small particles [6].  

 

 
Figure 5: The soot particle (4 particles, each with diameter 1) is shown at the 

center of 64 detectors (red diamonds) along the surface of a sphere of radius 100. The 
direction and strength of the electric field is visualized by the direction and distance from 

red to blue diamond. The electric field is cylindrically symmetric, is everywhere 
approximately tangent to the sphere, and has minima at the poles. 

 
The program can be extended to model the polarizations in even more complex 

situations. Changing α for points near the surface of the spheres approximates the 
situation where the soot is coated with another compound. Also, shrinking the 
wavelength of light to the scale of the particle will add new behaviors and could 
investigate resonances within the soot particle. If the magnetic polarizability is assumed 
to be small, which is normally a valid assumption [3], the information about the electric 
field could be used to find intensity of light scattered as a function of angle. 

Unfortunately, the technique is not as easily extended to larger, more realistic soot 
particles. In the current implementation, approximating a particle as just eight touching 
spheres, each represented by a 7x7x7 lattice, requires creating a full matrix with 52 
million values. The matrix scales with the square of the number of lattice points. More 
recent work [2] in computing techniques for this problem suggest that using a Fourier 
spectral method could greatly decrease computation time of solving the system of 
equations (3). 

 
 
 



Because of computational limitations, moderate-sized soot particles are often 
studied in place of large soot particles. To produce results applicable to laboratory 
measurements of scattering from soot aerosols, a statistically significant number of soot 
particles must be created and studied. Reference five discusses a method to produce 
realistic soot particle geometries. In the laboratory, the soot particles tumble randomly in 
relation to the incident field. Solving for the polarization states for each orientation of 
each particle can be computationally expensive. Making use of LU decomposition of the 
matrix A can facilitate solving (3) multiple times for different Einc []. 

Modeling scattering from small particles is still an open field of research. 
Relatively straightforward further investigations have the potential to find new physical 
insights and be applicable to current laboratory research. 
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1 The image of a dipole field was modified from a Wikipedia image: 
http://en.wikipedia.org/wiki/Dipole 
 

 

For more infotmation: 

 Goodman and Draine. Application of fast-Fourier-transform techniques to the discdrete-dipole approximation.1991 


