Teaching a Computer About Balance:
An Neural Network Exploration

Erik Shimshock
Scientific Computing
Harvey Mudd College

May 5, 2006

1 Motivation

Though I've decided to focus on artificial intelligence in graduate school next
year, I’ve never had a chance to take a course in neural networks or artificial in-
telligence. This project seemed like a great opportunity for me to explore some of
what I missed out on. Not knowing where to start, Professor Keller who periodi-
cally teaches Neural Networks, kindly pointed me towards multilayer perceptrons
trained using back propagation.

2 Introduction

A neural network is a computational model inspired by systems of connected
biological neurons. The type of neural network in this project is referred to as a
multilayer perceptron. These consist of multiple layers of nodes, the first being the
input layer, the last being the output layer, and all those in between are the hidden
layers. Nodes are modeled after biological neurons; the output of a specific node
is obtained by summing up the incoming signals and apply a nonlinear activation
function. A computation using the neural network involves inputting numerical
values into the first layer and observing the values output at the last layer. Signals
are propagated from layer to layer through weighted connections between all of
the nodes in one layer and all of the nodes in the next layer. Figure 1 depicts

a simple multilayer perceptron which receives two inputs, produces one output
value, and contains 1 hidden layer with two nodes in it.

Layer 1
Neuron 1

Input 1

Output 1

Layer 2
Neuron 1

Input 2
Layer 1
Neuron 2
Input Hidden Output
Layer Layer Layer

(0) (1) (2)

Figure 1: A simple multilayer perceptron

3 Model Details

3.1 Forward Computation

Consider a multilayer perceptron which has m nodes in its input layer. Let x1,
X2,...,Xy, be a specific set of inputs these nodes. The net input to node j in layer

1 (the first hidden layer), vgl), is
m
1 1
v = §w§i>xi (D
1=

(1)
Jji
node i. Notice that the index i actually starts at 0; so what are w%) and x¢? The
product w%)xo describes the default behavior of the node when all of the real

(1)

inputs sum to zero. The value of xj is defined to be —1, so w 0 defines what is

where w'.” 1s a real number representing the strength of the connection from input

called the threshold of the node (it is sometimes distinguished as 95-1) but I find
it easier to think of it as just another connection weight value, but one which is
always connected to an output of —1). In general the net input to node j in layer

Layer 2

X2 Neuron 1
Layer 1
Neuron 2
Input Hidden Output
Layer Layer Layer

0) (1) (2)

Figure 2: A more detailed look at a simple multilayer perceptron

W= Y i 2)

(0)
Jji
strength of the connection from node i in the previous level, and yl(lfl) is the
(I-1) .

is defined to be —1

i

where p is the number of nodes in the previous layer (layer [— 1), w’ is the

output of node i in the previous level. Just as before, y
and w%) is threshold for node j. To get a clearer idea of how these all of these
parameters interact, take a look at Figure 2 which shows a more detailed look at
the example network.

The output of node j in layer [is, as briefly mentioned earlier, a nonlinear

function of the net input to node j, specifically

wW=o0). 3)

Two popular choices for the function ¢ are the logistic function and the hyperbolic

tangent,

1

yi=0;) = =T (logistic function), (4a)
2
yi=0;) = The v 1 (hyperbolic tangent), (4b)

whose behavior is shown in Figure 3. Note that the logistic function asymptoti-
cally approaches the values 1 and 0 as the input tends towards o and —oo respec-
tively. Similarly the hyperbolic tangent function approaches 1 and —1 as the input
tends towards oo and —oo.

Starting with the input values and iteratively applying these rules it is straight-
forward to compute the output values of the neural network.

3.2 Training

Sure, computing the output of a specific neural network is easy, but so far it isn’t
very interesting. We don’t want the neural network to produce some arbitrary
output, we want it to learn something. Specifically, we want to present it with
a set of training data, have it learn from this, and hopefully it will be able to
generalize beyond the examples it was trained on. A training example is a known
input-output pair, [x,d], where x is the vector of values for the input nodes and d
is the vector of values the output nodes should produce.

One method for teaching a neural network is the back-propagation algorithm.
The idea is to run an example input through the network and determine how far
off its output is from the desired output. Then using the errors at the output nodes
we estimate the errors at the previous level’s nodes. At the same time we get an
estimate at how much the error is due to each connection from the previous layer
and adjust those connection weights accordingly. We repeat this process, using
the estimates for the node errors at a specific layer to estimate the previous layer’s
node errors and to also adjust the connection weights, until we reach the input
layer.

The error estimates begin with the calculation of the known output layer errors.

Assume the network has L layers, and thus for a specific training example the error
(L)

at node j in the output layer L, e i 18

' =dj—o; (5)

where d; is the desired output for the node and and o; is the actual output of the
node. We estimate the local gradient of the error for node j in the output layer,

S(L)

;s as
L L
8\ = o/ (0))el" (6)
where ¢’ is the derivative of the chosen neural activation function (see equation
(4)). For a node in a hidden layer /, the local gradient for node j, 55-1), is
! ! I+1) (I+1
8/ =o' L8 Y ™
k

recalling that yg-l) is the output of node j in layer / and w](fjﬂ) is the weight of the

connection from node j in layer / to node k in layer [+ 1.
We use these local gradient estimates to determine the adjustments we’ll make
to the connection weights. The simplest rule for determining the adjustment to the

)

connection from node i in layer / — 1 to node j in layer /, Aw i is

!) (I-1
aw') =ma Y (®)
where M is the learning-rate parameter, a constant between 0 and 1. Low values
of M result in slow learning, but high values of | can result in unstable oscillating
weight changes. One common modification involves adding a momentum term,
0 _ (1) @), (=1
iji —G'A/le- +n8J Yi) (9)

)

where A'w ;i 1s the previous change applied to this connection weight and o is the
momentum constant with a value between 0 and 1. This modification can allow
quicker convergence while maintaining stability.

Using a specific training point, this method allows us to determine the mod-
ifications for all of the weights, level-by-level working back-to-front. Running
through the rest of the of the training examples is referred to as an epoch, and we
repeat epoch after epoch until the network has satisfactorily learned the training
set. At this point the network is now trained and can hopefully accurately produce
outputs for the known inputs and generalize to inputs it didn’t train on.

4 Implementation

I implemented this algorithm in MATLAB. In planning out how the various vari-
ables would be stored, I came to a profound (to me at least) realization. It made

5

sense to keep track of the various values in matrices and vectors (e.g. the weights
from from layer O to layer 1 would be a matrix, the gradients for the nodes in layer
1 would be a vector, etc.), but if I stored them in the right ways I could cleverly
not just some, but ALL of the calculations in the algorithm using algebraic matrix
operations. For example with the neural network in Figure 2, equation (1) for
calculating the net inputs to the layer 1 nodes can be formulated as

| 1 w10 W20

[vg) vé)] =[~1 x1 x| |wn wa

w12 w22
In this way I was able to deal calculate the a set of variables for a layer in one fell
swoop using matrix additions, multiplications and the occasional transpose. One
awesome side effect of coding the algorithm in this way was that I was able to
entirely avoid the annoyance of MATLAB indexing its matrix and vectors starting

at 1.

5 Application

At this point I was like a fisherman in the desert; I had a neural network but no
data set to try it on. I could think of lots of interesting things to try and get my
network to learn, but none of them had a large set of known input-output pairs to
use as a training set.

5.1 Scale Balancing

After some searching, I eventually found an interesting problem and data set on
the internet. Coincidentally the data set was provided by the graduate school
program I had visited a couple of weeks earlier. From the many data sets on
the UC Irvine Machine Learning Repository I chose the Balance Scale Database
[D.J. Newman and Merz(1998)]. The problem set before the neural network was
to determine if a scale was left-heavy, balanced, or right-heavy given the masses
and distances from the center for a weight on the left and right of the scale. The
data set had 5 possible weight and distance values, totaling 625 = 5* data points.

5.1.1 Methodology

My neural network consisted of 4 input nodes, 1 output node, and a single hidden
layer with 2 nodes. For a left-leaning scale the desired output would be -1, for

6

a balanced scale the desired output would be 0, and for a right-leaning scale the
desired output would be 1. T used a learning-rate parameter, 1 = .01, and momen-
tum constant, o0 = 0.9. My training set consisted of a random 50% of the data set.
I ran a training session of 500 epochs, and in each epoch the order that the training
examples were presented to the network was randomized.

5.1.2 Results

The standard measure of performance for a specific run of a neural network is the
instantaneous sum of squared errors defined as

1
E=2)¢ (10)
j

where the sum is over all output nodes, and e; is the error for the jth output node.
In my case there is only one output neuron so the value is merely half of the error
squared. Measuring the average squared error is accomplished by averaging over
a whole epoch. At the end of 500 training epochs, testing on the training set
resulted in a good average squared error of 0.0332. Testing this trained network
on the whole data set resulted in an average squared error of 0.0712, showing that
clearly the network was able to take what it had learned and generalize to most of
the rest of the data set. In fact, for 90% of the data points, the network achieved
an instantaneous squared error of less than 0.125. This means that for 90% of
the inputs, rounding the output of the network to the nearest integer results in the
correct answer. Figure 4 shows the distribution of errors across the whole data set.

Looking more closely at which data points were having the larger errors, I
noticed a pattern. I realized that the larger errors seemed to occur when the scale
was almost balanced (the converse was not always true since there were many
closely balanced points which it correctly predicted). I was able to quantify this
observation by calculating the difference magnitude,

mrd, — mldl

where w, and w; are the masses and d, and d; are the distances from the center
for the right and left weights (so if the value is negative the scale is tipped to the
left, O its balanced, and positive its tipped to the right). Figure 5 shows a scatter
plot of the difference magnitude versus the instantaneous squared error for each
point in the data set, clearly confirming the pattern I noticed. Thinking about this,
I realized that this is the region where small changes in the inputs result in large

7

changes in the outputs (i.e. small changes to the masses or distances can change
the balance of the scale drastically), so it is quite expected that the network would
have a hard time making decisions there.

5.2 XOR Gate

As a proof of concept when I was initially coding up the neural network I used the
simple XOR Gate data set. This data set has two binary input values and 1 binary
output which is the exclusive-or of the inputs (1 if the inputs are different and 0
if the inputs are the same). With only 4 data points, this data set was clearly not
for teaching a network to generalize. My network consisted of two input nodes,
1 output node, and 2 hidden nodes, just like the network in Figure 2. I used all 4
data points as my training set, and used it to verify that my neural network would
in fact improve with training. I also used the data set to explore how changing the
learning constant 1 and momentum constant ¢ affected convergence speed and
stability. Figures 6, 7, 8, and 9 plot the average squared error over each epoch
for various values of the two parameters. I was able to verify the observation that
combinations of a low learning rate and high momentum or high learning rate and
low momentum were stable and converged.

References

[D.J. Newman and Merz(1998)] C.L. Blake D.J. Newman, S. Hettich and C.J.
Merz. UCI repository of machine learning databases, 1998. URL
http://www.ics.uci.edu/~mlearn/MLRepository.html.

[Haykin(1994)] Simon Haykin. Neural Networks: A Comprehensive Foundation.
Macmillan College Publishing Company, 1994.

Neuron Nonlinear Activation Functions

150 — logisitic function
’ — hyperbolic tangent

Neuron output

_
-10 -8 -6 -4 -2 0 2 4 6 8 10
Net input to the neuron

Figure 3: Two common choices for the node’s activation function

Individual Test Case Accuracy
600 T T T T T T T T T

550 1

500 1

450 1

400 1

350 1

300 1

250 1

number of test cases

200 1
150 T
100 1

50 1

0 [—— L - L L L L
() 025 05 0.75 1 125 15 175 2 225 25
instantaneous error squared

Figure 4: This shows the distribution of error magnitudes for the whole data set.

10

Accuracy of a Trained Neural Network

250
* %
o
8
i
@ *
S 15
=
n
2
g M
g 1 Rk
g
8
e *
*
05 +*
* +;k *
+ o+
* *

-25 -20 -15 -10 -5 0 5 10 15 20 25

Figure 5: This shows that the points where the network had a hard time correlated
with being nearly balanced.

11

Convergence withn = .01

08
=0
07 -~ -a=01
=05
06 -~ a=09

Average Squared Error over Epoch

“L
i

0 100 200 300 400 500 600 700 800 900 1000

Figure 6: Varying momentum with constant learning value

12

Convergence withn = .1

07
=0
06 - - -a=01
=05
-~ a=09

Average Squared Error over Epoch

0 100 200 300 400 500 600 700 800 900 1000

Figure 7: Varying momentum with constant learning value

13

Convergence withn = 5

=0
08 - - -a=01

=05
07 -~ a=09

Average Squared Error over Epoch
5 &

o

100 200 300 400 500 600 700 800 900 1000

Figure 8: Varying momentum with constant learning value

14

Convergence withn = .9

=0
14 -~ -a=01

=05
12 -~ a=09

06

Average Squared Error over Epoch

o2 it T R STt

0 100 200 300 400 500 600 700 800 900 1000

Figure 9: Varying momentum with constant learning value

15

