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1 Background

Earlier this year, I was chosen to represent Harvey Mudd College in the
Interdisciplinary Contest in Modeling (ICM). Our project involved creating
a model to simulate the effect the virus HIV would have on a handful of
countries around the world, and test the effect of various proposed solu-
tions. While brainstorming possible models, we felt that a scale-free sexually
transmitted infection (STI) model would be the most realistic, and the most
interesting. However, due to time constraints, we decided to program a sim-
ple suseptible-infected-resistant (SIR) model instead. For my final project, I
decided to design the scale-free STI model, and see how successful it would be.

SIR models assume a randomly mixed population, in which every person
is equally likely to give a disease to every other person in the population.
The exact makeup of the population is unimportant. This works well for air
borne diseases, such as a cold, the flu, or SARS. However, there are many
diseases, referred to as social diseases, in which the exact social networks can
make a difference. STIs often fall into this category [5].

In a scale-free model, each individual person is represented as a node on
a graph. If two persons are able to transmit a disease to one another, this is
represented with an edge between the two nodes. Under a scale-free model,
the probability density function for the number of edges a node has is a
power series. The result of this is that most persons in the society have fewer
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Figure 1: A scale free model is one in which the probability density function
for the number of edges per node is a power series, resulting in most nodes
having a few edges, and a few having many edges.

than average vertices, and a small number of people have a large number of
vertices [5]. An example graph can be seen in Figure 1.

2 The Model

My simulation works as follows. First, the program builds a society of people.
The program starts with a simple graph. Then, it adds a node one at a time,
until it has a full starting population. For every new node, the probability
that node will be connected with node i is

p(connect) =
Vi + 1

N
(1)

where Vi is the number of edges on node i, and N is the total number of
nodes, counting the new one. This processed was taken from [6]. Once this
population is created, a preset number of people are randomly selected to
become infected with HIV. Those who are infected have a random level of
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infection (see below). This process takes Ω(N2) steps, where N is the number
of individuals in the population. However, it was often the case for multiple
trials that a single population would be created, and used every time.

Once we have built the population, we run it for a preset number of years.
Each year, the following events happen. First, health deteriorates. Second,
HIV transmissions occur. Third, people die. And last, new people are born.

2.1 Health

All persons have N +2 possible levels of health. A health of 0 means healthy.
A health of 1 means in the first year of HIV infection. Similarly, a health of
2 means in the second year, and so on. A health of N (attained after being
infected with HIV for N years) indicates that a person’s disease has pro-
gressed to the level of AIDS. A person’s infection cannot be worse than this,
although it can kill them. Finally, a health of -1 is assigned to a dead indi-
vidual. The process of adjusting people’s levels of infection takes Ω(N) steps.

2.2 Transmissions

Normally, people who study infectious diseases talk about a disease’s R0, in
order to determine whether the diseases will persist. Basically, if I became
infected with a disease, then on average I will infect R0 others before the
diseases has run its course. The R0 value for AIDS under this model is

R0 = (chance of transmission) ∗ (life span) ∗ (# of contacts) (2)

Thus, R0 should vary from individual to individual.

To determine whether HIV is transmitted, the population is scanned.
Whenever there is an edge between someone who is infected and someone
who isn’t, there is a set random probability of transmission. This probability
is increased in someone with AIDS, because of an increased viral load. In
some cases, it may be realistic for this probability to be reduced if either
individual has a high number of edges (this would represent the government
pushing for condom use in brothels, needle exchange programs, and other
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methods of specifically targeting those most at risk). A person who has just
become infected cannot infect others until the next year. This entire process
takes Ω(N2) steps.

2.3 Death

Every year, a person has a set chance of dying. If the person has a fully
progressed case of AIDS, the person suffers an increased likelihood of dying
(often, this is actually an automatic death). If a person dies, their health is
set to -1, and all of their vertices are removed. This process is Ω(N2).

2.4 Births

The number of births is equal to the birth rate multiplied by the population.
The overall population gain is multiplied by a random number, to represent
small fluctuations in birth rates. Each person then gains a random number
of contacts in the same fashion as when the population is created. The birth
process takes Ω(M2 +NM) steps, where N is the number of people currently
in the population, and M is the number of new births.

3 HIV at Mudd

As a test of the model, we considered the question, ”Could a strain of HIV
become endemic at Mudd?” This question was sparked in part by the 2005
National College Health Assessment (NCHA), where 1 individual (of the 1/3
of campus who responded) indicated that he or she was HIV+ [1]. Because
we are a school of only 700 (a medium size for the model), I felt that this
would be a perfect opportunity to test this.

Under this scenario, connectivity was set to 1.12 (this gave us contact lev-
els that were similar to those indicated in [1]). Due to problems setting up
an initial graph, all trials began with the same initial population. I assumed
that no one would die of AIDS, because the incubation time was much higher
than the 4 years most students spend in college. I assumed a 25% annual
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turnover in the student body, and a 15% transmission rate of HIV annually
(this would be expected if the person was not on anti-retroviral medication,
and if condoms were not used [2]), giving us that R0 ≈ 0.45∗(# of partners).
These both were worst case scenario situations, and were chosen to determine
if HIV had any chance of becoming endemic at Mudd. The simulation was
run for 25 years.

I ran several trials in which 3 members of the initial student body had
HIV. Under no circumstances (short of an unrealistically high transmission
rate) were any students HIV+ at the end of the simulation. In order to
determine if this was an effect of initial conditions, I ran 5 trials, in which
100 student (14% of the initial population, similar to the current state in
Zimbabwe) had HIV. After 25 years, there was an average of around 6-7 stu-
dents in the population with HIV (see Figure 2). With numbers like these,

Figure 2: Even with an extremely high initial population of infected students,
HIV does not appear to be capable of becoming endemic at Mudd without
additional outside. The green bar represents the total population size. The
red bar represents the number of people infected with HIV.

it seems that Mudd need not worry about an endemic HIV problem, unless
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either there is an influx from an outside population, or there is a sudden and
prolonged increase in heroin use.

4 HIV in Africa

4.1 Latin Hypercube Sampling

In order to run sensitivity tests on my AIDS model, we chose to use Latin
Hypercube Sampling (LHS), as described in [3]. The advantage of LHS is
that you can analyze data with far fewer calculations than would be needed
for a factoral experiment (consider, for 4 parameters, trying 5 values each,
would require 45 > 1000 trials, while the LHS analysis we did took only
16). The first step in LHS is to choose a probability distribution function for
each variable, and then divide each pdf into N equiprobable groups (where
N > 4K/3). Then, a point from each group is drawn without replacement,
and N trials are arranged. Once each of these N trials has been run, sta-
tistical tests are run to determine the correlation between each variable and
the outcome.

4.2 Setup

For this project, we ran 16 simulations, and varied 4 parameters. The first
parameter was how long a person could live with HIV before it advanced to
AIDS. The second parameter varied was the average number of contacts a
person would have. The third parameter was how easily HIV was spread.
The last parameter was how easily HIV was spread by those within the top 10
percentile of contacts (this ended up being anyone with 9 or more contacts).
There were two variables we kept track of, to determine the ”health” of a
population. The first was the final population size. Because every population
should grow to be approximately similar population levels in the absence of
AIDS, this was an indicator of the size of a population crash. The second
health statistic was the end number of people infected with HIV. We hoped
that these two statistics would give similar results. Each simulation was
run 10 times, and the average end values were used. All parameters except
promiscuity were taken from [2]. I assumed that the low expected life span
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was likely in part due to the high prevalence of AIDS, and as such I chose
rather to use the average expected life span in Africa [4].

Because the initial setup of the population was so variable, and had such
a major effect on the outcome of the population, this was regulated. Also,
due to technical trouble, we the starting population was only 999 people.
All trials were run with the same initial population, and with all members
having the same level of infection.

4.3 Statistics

To determine the effect each parameter had on overall AIDS levels, we ran
least-squares correlative tests. Because our health measurements appeared
very non-normal, we ran tests on their rank (i.e., the largest population
received a 16, the next largest a 15, and so on) [3]. Our degree of correlation,
r, was determined by

r =
SSxy√

SSxxSSyy

(3)

where SSij = Σ(ij − īj̄) [7].

4.4 Results

We found that our two ratios of health were related. In fact, as can be seen
in Figure 3, larger populations tended to have a lower number of HIV cases.

We ran statistical tests on our data, the results of which can be seen in
Table 4.4. Simulations with the same parameters gave similar results. For
example,

Parameter Corr. with Population Corr. with Health
Time to Progression 0.3147 -0.0118

Trans. in High Risk Groups -0.302 -.7223
Connectivity Level 0.7250 0.3471
Transmission Rate -0.3843 0.1122

The results indicate that reducing the transmission rates of those most
at risk and reducing promiscuity levels would have the biggest effect on the
population. Increasing the time it takes for HIV to progress to AIDS only
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Figure 3: There appeared to be a positive correlation between end population
levels end healthy population.

affected the end population. Lowering the transmission rates increased the
end population also, but had the paradoxical effect of increasing the level of
HIV in the final population. This may have been caused by statistical noise.

A later simulation gave somewhat different results, in which increasing the
time to HIV progression severely hurt the population, and the transmission
rate in high risk groups made less of a difference. Due to time constraints, we
were unable to run more tests. This should be done in the future, however,
to determine what the optimal number of simulations would be. In the later
simulation, we found that after simulations with the same set of parameters,
population levels had an average standard deviation of 5%, and population
health had an average standard deviation of 11%.

4.5 Conclusion

It appears that according to the model, the most successful plans for lessening
the impact of AIDS on Zimbabwe would
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5 Problems

There are several problems with the current model, which could be improved
upon. The first is that we assume that if two people come into contact with
one another, they will stay in contact for the rest of their lives, no matter
how many other people they come into contact with. The second problem is
that, in our model, a person cannot transmit HIV to others the same year
they come into contact with it. This would tend to underestimate the spread.
Another problem is that everyone in the model has the same chance of trans-
mitting HIV per contact. This is not realistic, because various factors, such
as the use of condoms, or whether the person is infected with other STIs
can affect how likely HIV will be transmitted. A further model could take
into account such things as ”uses condoms,” and allow these people to have
lowered transmission rates. The fourth problem is that chance of transmis-
sion does not scale with number of contacts. To explain this, I will give an
example. If a person has only one other partner, and the partner has HIV,
then we will say that the person’s chance of contracting HIV is (1−X). On
the other hand, if the person has 300 contacts, each of whom is infected with
HIV, then the probability that person will contract HIV is (1−X300). This
would only be the case if the latter person were having 300 times as much sex
as the first person, which seems unrealistic. This could perhaps be fixed with
some type of asymptotic curve. The final problem with the model is that it
assumes static behavior. This may not be unrealistic, however it means that
we are unable to determine what increased HIV testing would accomplish.
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