One-Phase Stefan Problems

Tracy Backes
17 April 2007

Stefan Problems

- A sub-category of moving boundary problems
- Problems involving
 - change of phase
 - moving surfaces of separation between phases

Idealized Solidification of a Liquid

frozen surface of separation

Describing the System

$$\frac{\partial T}{\partial t} = \frac{\kappa}{r^{\beta}} \frac{\partial}{\partial r} \left[r^{\beta} \frac{\partial T}{\partial r} \right], \quad a < r < R(t), \quad t > 0$$

$$T = T_{\rm f}, \quad r \geqslant R(t), \quad t > 0$$

$$T = T_s$$
, $r = a$, $t \ge 0$

Solid-liquid interface:

$$(K) \left(\frac{\partial T}{\partial r}\right)_{R(t)} = (L\rho) \frac{\mathrm{d}R(t)}{\mathrm{d}t}$$

Describing the System

$$\frac{\partial U}{\partial \tau} = \frac{1}{z^{\beta}} \frac{\partial}{\partial z} \left[z^{\beta} \frac{\partial U}{\partial z} \right], \quad 1 < z < Z(\tau), \quad \tau > 0$$

$$U=1, \quad z\geqslant Z(\tau), \quad \tau>0$$

$$U=0$$
, $z=1$, $\tau \geqslant 0$

Solid-liquid interface:
$$\left(\frac{\partial U}{\partial z}\right)_{Z(\tau)} = \alpha \frac{\mathrm{d}Z(\tau)}{\mathrm{d}\tau}, \quad Z(0) = 1$$

Heat Balance Integral Method

- Assume space-dependence of temperature that is consistent with the boundary conditions
- Integrate the heat flow equation and substitute assumed temperature distribution
- Solve to find the motion of the phase change boundary

HBIM

- Divide the temperature range [0,U] into n equal intervals $U_1,...,U_n$.
- Assume a linear profile each temperature interval

• Integrate $O_{Z_i}^{Z_{i+1}}[z^{\beta} * (\text{heat equation})]$

HBIM

 Following this method, we can reduce the heat equation and rearrange it into a system of (nonlinear) first-order ODEs for Z_i

$$(2Z_{1}+1)\dot{Z}_{1} = \frac{6}{Z_{1}-1} - \frac{6Z_{1}}{Z_{2}-Z_{1}}$$

$$(2Z_{i+1}+Z_{i})\dot{Z}_{i+1} + (Z_{i+1}+2Z_{i})\dot{Z}_{i} = \frac{6Z_{i}}{Z_{i+1}-Z_{i}} - \frac{6Z_{i+1}}{Z_{i+2}-Z_{i+1}}, \quad i=1,2,\ldots,n-2$$

$$[2(1+3\alpha n)Z_{n}+Z_{n-1}]\dot{Z}_{n} + (Z_{n}+2Z_{n-1})\dot{Z}_{n-1} = \frac{6Z_{n-1}}{Z_{n}-Z_{n-1}}$$

Finite Difference

- Runge-Kutta method is well-suited; however,
 - it requires 4 function calls each step
 - it requires a very small time step to remain stable
- Finite Difference is also a candidate
 - it requires 1 function call each step
 - it gives similar level of accuracy

Current Method

- Euler's Method:
 - Solve for $\dot{Z}(\tau_0)$

$$-\dot{Z}(\tau_i) = Z(\tau_{i-1}) + \dot{Z}(\tau_i) * \Delta \tau$$

• How to choose τ_0 ?

$$Z_i(\tau) = 1 + \mu_{i,0}\tau^{1/2} + \mu_{i,1}\tau + \mu_{i,2}\tau^{3/2} \dots$$

• Solve for coefficients $\mu_{i,j}$ by plugging the series into our system of differential equations

- n = 1, works out neatly
- n = 2, 3, ..., involves non-linear systems of equations

$$9(\mu_{i+1,2}+\mu_{i,2})+\mu_{i+1,0}(2\mu_{i+1,1}+\mu_{i,1})+\mu_{i,0}(\mu_{i+1,1}+2\mu_{i,1})+2\mu_{i+1,1}(2\mu_{i+1,0}+\mu_{i,0})$$

 $\begin{array}{c} \mu_{1,0} = \frac{4}{\mu_{1,0}} - \frac{4}{\mu_{2,0}} \\ \text{For the coefficients to each of the the terms;} \\ \mu_{1,0} + 3\mu_{1,1} = 6 \\ \text{System} \end{array} \\ \begin{array}{c} \mu_{1,0} = \frac{4}{\mu_{1,0}} - \frac{4}{\mu_{1,0}} \\ \mu_{2,1} - \mu_{1,1} \\ \text{Of equations as} \end{array} \\ \begin{array}{c} \mu_{1,0} = \frac{4}{\mu_{1,0}} - \frac{4}{\mu_{1,0}} \\ \mu_{2,1} - \mu_{1,1} \\ \mu_{1,0} - \mu_{1,0} \end{array} \\ \begin{array}{c} \mu_{1,0} = \frac{4}{\mu_{1,0}} - \frac{4}{\mu_{1,0}} \\ \mu_{2,1} - \mu_{1,1} \\ \mu_{1,0} - \mu_{1,0} \end{array} \\ \begin{array}{c} \mu_{1,0} = \frac{4}{\mu_{1,0}} - \frac{4}{\mu_{1,0}} \\ \mu_{2,1} - \mu_{1,1} \\ \mu_{1,1} - \mu_{1,1} \end{array} \\ \begin{array}{c} \mu_{1,0} = \frac{4}{\mu_{1,0}} - \frac{4}{\mu_{1,0}} \\ \mu_{2,1} - \mu_{1,1} \\ \mu_{1,1} - \mu_{1,1} \end{array} \\ \begin{array}{c} \mu_{1,0} = \frac{4}{\mu_{1,0}} - \frac{4}{\mu_{1,0}} \\ \mu_{2,1} - \mu_{1,1} \\ \mu_{1,1} - \mu_{1,1} \end{array} \\ \begin{array}{c} \mu_{1,0} = \frac{4}{\mu_{1,0}} - \frac{4}{\mu_{1,0}} \\ \mu_{2,1} - \mu_{1,1} \\ \mu_{1,1} - \mu_{1,1} \end{array} \\ \begin{array}{c} \mu_{1,1} - \mu_{1,1} \\ \mu_{1,1} - \mu_{1,1} \end{array} \\ \begin{array}{c} \mu_{1,1} - \mu_{1,1} \\ \mu_{1,1} - \mu_{1,1} \end{array} \\ \begin{array}{c} \mu_{1,1} - \mu_{1,1} \\ \mu_{1,1} - \mu_{1,1} \end{array} \\ \begin{array}{c} \mu_{1,1} - \mu_{1,1} \\ \mu_{1,1} - \mu_{1,1} \end{array} \\ \begin{array}{c} \mu_{1,1} - \mu_{1,1} \\ \mu_{1,1} - \mu_{1,1} \end{array} \\ \begin{array}{c} \mu_{1,1} - \mu_{1,1} \\ \mu_{1,1} - \mu_{1,1} \end{array} \\ \begin{array}{c} \mu_{1,1} - \mu_{1,1} \\ \mu_{1,1} - \mu_{1,1} \end{array} \\ \begin{array}{c} \mu_{1,1} - \mu_{1,1} \\ \mu_{1,1} - \mu_{1,1} \end{array} \\ \begin{array}{c} \mu_{1,1} - \mu_{1,1} \\ \mu_{1,1} - \mu_{1,1} \end{array} \\ \begin{array}{c} \mu_{1,1} - \mu_{1,1} \\ \mu_{1,1} - \mu_{1,1} \end{array} \\ \begin{array}{c} \mu_{1,1} - \mu_{1,1} \\ \mu_{1,1} - \mu_{1,1} \end{array} \\ \begin{array}{c} \mu_{1,1} - \mu_{1,1} \\ \mu_{1,1} - \mu_{1,1} \end{array} \\ \begin{array}{c} \mu_{1,1} - \mu_{1,1} \\ \mu_{1,1} - \mu_{1,1} \end{array} \\ \begin{array}{c} \mu_{1,1} - \mu_{1,1} \\ \mu_{1,1} - \mu_{1,1} \end{array} \\ \begin{array}{c} \mu_{1,1} - \mu_{1,1} \\ \mu_{1,1} - \mu_{1,1} \end{array} \\ \begin{array}{c} \mu_{1,1} - \mu_{1,1} \\ \mu_{1,1} - \mu_{1,1} \end{array} \\ \begin{array}{c} \mu_{1,1} - \mu_{1,1} \\ \mu_{1,1} - \mu_{1,1} \end{array} \\ \begin{array}{c} \mu_{1,1} - \mu_{1,1} \\ \mu_{1,1} - \mu_{1,1} \end{array} \\ \begin{array}{c} \mu_{1,1} - \mu_{1,1} \\ \mu_{1,1} - \mu_{1,1} \end{array} \\ \begin{array}{c} \mu_{1,1} - \mu_{1,1} \\ \mu_{1,1} - \mu_{1,1} \end{array} \\ \begin{array}{c} \mu_{1,1} - \mu_{1,1} \\ \mu_{1,1} - \mu_{1,1} \end{array} \\ \begin{array}{c} \mu_{1,1} - \mu_{1,1} \\ \mu_{1,1} - \mu_{1,1} \end{array} \\ \begin{array}{c} \mu_{1,1} - \mu_{1,1} \\ \mu_{1,1} - \mu_{1,1} \end{array} \\ \begin{array}{c} \mu_{1,1} - \mu_{1,1} \\ \mu_{1,1} - \mu_{1,1} \end{array} \\ \begin{array}{c} \mu_{1,1} - \mu_{1,1} \\ \mu_{1,1} - \mu_{1,1} \end{array} \\ \begin{array}{c} \mu_{1,1} - \mu_{1,1} \\ \mu_{1,1} - \mu_{1,1} \end{array} \\ \begin{array}{c} \mu_{1,1} - \mu_{1,1} \\ \mu_{1,1} - \mu_{1,1} \end{array} \\ \begin{array}{c} \mu_{1,1}$

$$2\mu_{1,0}\mu_{1,1} + 3\mu_{1,2} = 4 \left[\frac{\mu_{2,2} - \mu_{1,2}}{(\mu_{2,0} - \mu_{1,0})^2} + \frac{\mu_{1,0}(\mu_{2,1} - \mu_{1,1})}{(\mu_{2,0} - \mu_{1,0})^2} - \frac{(\mu_{2,1} - \mu_{1,1})^2}{(\mu_{2,0} - \mu_{1,0})^3} \right] + \frac{\mu_{i+1,0}(\mu_{i+2,1} - \mu_{i+1,1})}{(\mu_{i+2,0} - \mu_{i+1,0})^2} - \frac{(\mu_{i+1,0} - \mu_{i+1,0})^2}{(\mu_{i+2,0} - \mu_{i+1,0})^3} + \frac{\mu_{i+2,2} - \mu_{i+1,2}}{(\mu_{i+2,0} - \mu_{i+1,0})^2} \right], \quad i = 1, 2, 3, \dots, n-2$$

$$(14)$$

 $\underbrace{\text{We can the}}_{\mu_{i+1,0} + \mu_{i,0}} \underbrace{\text{We can the}}_{\mu_{i+1,0} - \mu_{i,0}} \text{n solve the system using the relation}$

 $(6 + 12\alpha n)\mu_{n,1} + 6\mu_{n-1,1} + \mu_{n,0}[(2 + 6\alpha n)\mu_{n,0} + \mu_{n-1,0}] + \mu_{n-1,0}(\mu_{n,0} + 2\mu_{n-1,0})$

(14)

$$6(\mu_{i+1,1} + \mu_{i,1}) + \mu_{i+1,0}(2\mu_{i+1,0} + \mu_{i,0}) + \mu_{i}(\mu_{i+1,0} + \mu_{i,0}) + \mu_{i}(\mu_{i+1,0} + \mu_{i+1,0}) + \mu_{i+1,0}(\mu_{i+1,0} + \mu_{i+1,0}) +$$

$$(9+18\alpha n)\mu_{n,2}+9\mu_{n-1,2}+2\mu_{n,1}[(2+6\alpha n)\mu_{n,0}+\mu_{n-1,0}]+2\mu_{n-1,1}(\mu_{n,0}+2\mu_{n-1,0})$$

$$+\mu_{n,0}[(2+6\alpha n)\mu_{n,1}+\mu_{n-1,1}]+\mu_{n-1,0}(\mu_{n,1}+2\mu_{n-1,1})$$

$$=12\left[\frac{\mu_{n-1,1}}{\mu_{n,0}-\mu_{n-1,0}}-\frac{\mu_{n-1,0}(\mu_{n,1}-\mu_{n-1,1})}{(\mu_{n,0}-\mu_{n-1,0})^2}+\frac{(\mu_{n,1}-\mu_{n-1,1})^2}{(\mu_{n,0}-\mu_{n-1,0})^3}-\frac{\mu_{n,2}-\mu_{n-1,2}}{(\mu_{n,0}-\mu_{n-1,0})^2}\right] (16)$$

What's Next?

- Fourth-order Runge-Kutta Method
- Tackle the spherical case, where $\beta = 2$.