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1.1 INRODUCTION 

 

Many seemingly simple physical systems encountered in life can have very interesting 

and sometimes non-intuitive dynamics.  Pendulums, one of the first systems studied by 

young students, have been shown to have very interesting dynamics when their pivot 

point is oscillated at high frequencies.  With this modification, pendulums possess a 

peculiar equilibrium state when they are inverted, or pointing vertically up. 

 

It was later proven that even systems composed of multiple pendulums linked together 

(double pendulums, triple pendulums, etc.) will also exhibit these dynamics.  This 

evidence suggests the intriguing thought that this inverted equilibrium may even be 

present in the continuous case, when the number of pendulums goes to infinity – an ideal 

string.  Unfortunately, this hypothesis was mathematically disproved, as the required 

frequency for stability was found to increase with the pendulum density. 

 

However, the stable equilibrium in inverted strings, playfully named the “Indian Rope 

Trick,” was found experimentally.  This is because no real string is ideal, a possessing a 

“stiffness” that resists bending.  The goal in this paper is to numerically model the 

linearized equations for an inverted “stiff” string and analyze its different properties. 

 

 

1.2 MATHEMATICAL FORMULATION 

 

We begin with a stiff, inextensible string of length L, held in the near upright position and 

attached to an oscillator at its base.   This oscillator moves according to 

 

 tz 0cosωε= , (1) 

assuming ε is small. 

 

We will assume that the displacements u(s,t) of the string are small, such that  

 

 ),(),( tzts uu ≈  (2)    

 

Although this assumption quickly becomes invalid without a forced base, it should model 

the equilibrium state for high oscillations. 



 

The forces affecting the string at its base are gravity g and the force due to the oscillating 

base, giving the equation 

 tgF ωεωρ cos2−−= . (3) 

 

For a perfectly upright string, the tension should vary along it, with tension being zero at 

the free end.   The function of tension along a string is then 

 

     
 
Fig. 1.  Inverted string definitions. 
    
 

 ( )( )sLtgT −−−= ωεωρ cos2  (4) 

 

Therefore, small horizontal perturbations u away from vertical will also possess 

approximately the same tension, since u is perpendicular to the tension. 

 

Now we apply the equation that governs the dynamics of inextensible strings,  
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Also, for our small perturbations, the x or y components donot affect the solution, only 

total displacement, so ),(),( tzutz =u . 
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Finally, we add in stiffness, which is a fourth order spatial derivative term, proportional 

to the stiffness factor B. 

 

We now have the governing equation: 
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and the boundary conditions  

 0=′= uu , at s =0 (7) 
 0'''' ==′′ uu , at s = 1. (8) 
 

 

 

COMPUTATIONAL RESULTS 

 

Numerical simulations were run using Matlab
TM

 7.3.0.  

 

It was difficult to determine which numerical method to use in order to model the 

equations above, for a variety of reasons.  The most important aspect of the model is 

generating stable inverted solutions.  Since we are dealing with a fourth order derivative 

term, it seems necessary for the model to preserve terms of higher order.  Thus, a method 

made for preserving these terms like the pseudospectral method would have been ideal. 

However, this problem lacks the periodic boundary conditions necessary for 

implementation.  Thus, a finite difference method was used. 

 

Naïvely, a second-order finite difference method was first implemented to model the 

dynamics. Stable solutions were found for ε > 0, so the numerical model does agree that 

certain stable solutions exist.  A sample graph is shown in Fig. 1.  The frequency ω 

controlled whether the solution was stable, with frequency below some threshold 

allowing the string to fall. 

 

For ε = 0, the string would fall to the left or right depending on initial conditions.  In 

addition, increasing the stiffness B caused the solutions to try and avoid bending in parts 

of the string, which agrees with theory.   
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Fig. 1.  We see that for an oscillating base, the string has a stable equilibrium in its 

upright position. 
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Fig. 2.   In this image, we see that for a base that does not oscillate, the string “fall” off.   

 



However, there were some problems in the model that were nonphysical.   

 

•" No matter how large stiffness B was increased, with ε = 0 the string would always fall 

over to one side.  Physically, a very rigid object that was held stationary at its bottom 

without letting it swing would cause the object to remain upright. This is most likely 

caused by the stiffness being modeled using a fourth order derivative term u’’’’.  

Although this term creates stiffness for very quickly changing u, it still allows the 

string to bend, as long as that bending is not fourth order.  For example, even with an 

infinite B, the string would still be allowed to bend into a parabola. 

 

•" For stable solutions, increasing the B caused the string to oscillate farther away from 

equilibrium.  This is counter to the mathematical prediction that stiffness stabilizes a 

solution.  Most likely, this is due to the nonphysical model of stiffness. 

 

•" For ε > 0, stable solutions were found even with B = 0.  This again does not agree 

with theory.  Most likely, since a second-order finite difference method has error 

O(h
2
), then fourth order derivative terms can arise.  These error terms would then act 

as a an extra B, letting B=0 does not truly remove stiffness. 

 

•" When the time step size was changed, it altered the overall results, increasing the 

amount of total time an oscillation would take.  This is most likely also due to the 

extra fourth order derivative terms, since these terms are proportional to the ratio of 

∆x and ∆t. 

 

The model itself had several caveats.  First of all, the model required an extremely small 

time step in order to avoid the Courant-Friedrichs-Levy condition.  For fourth order 

PDEs, this condition can be as stringent as 
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C for this model also was affected by the input frequency ω0 and the stiffness B.  Thus, 

any practical time resolved data required an enormous number of time steps, and the 

number was sensitive to any changes in B and ω0. 

 

A spatial fourth-order finite difference method was coded to attempt to analyze the 

dynamics, but the required number of steps could no be determined.  After attempting 

extremely large time steps over an increasingly small total time, this method was 

abandoned. 

 

 

CONCLUSIONS 

 

Despite the disappointing shortcomings of the model, it did predict that vertically 

oscillating a string’s pivot point creates stable solutions in the inverted position, as long 

as the frequency was above some threshold.  This is promising, and was the original goal 



of this project.  If this project were to be continued, the next step would be to re-examine 

the mathematical model (particularly the stiffness component).  The model also needs to 

be revised: the fourth-order finite difference method could be attempted on a faster or 

more powerful computer capable of handling the required time steps, and other PDE 

solving methods could be attempted. 
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APPENDIX : MATLAB CODE 

 

 

 

% 2ndstring.m 5/6/2007 Devon Lafferty 
% 
% This program tries to solve the equation governing an upright stiff  
% string with an oscillating base. 
% A second-order space finite diffference method was used, with 
equations  
% gained from Maple. 
% Since only second order, problems arised due to higher order effects. 
%  
% It uses a second-order central differences in time. 
  
  
clear; 
L=1; 
Nx=100; 
dx=L/Nx; 
T=5.0;  % final time 
Nt=800000;  % %number of actual time steps 
dt=T/Nt; 
alpha=(dt/dx)^2; 
tstep=.005;             %time step to actually be shown 
nstep=int32(tstep*Nt/T); 
solstep=int32(T/tstep); 
  
  
  
%set physical constants 
g=9.8;          % acceleration due to gravity in m/s^2 
w=20;          % frequency of oscillation in radians/s 
m=.4;           % mass per unit length in kg/m 
  
  
  
%find the appropriate constants 
%B=realB/(m*g*L^3); 
B=0.2; 
e=.1; 
del=g/L; 
  
C=alpha*del*B*alpha/dt^2; 
  
  
  
% set up spatial and temporal grid 
x=[0:Nx]*dx; 
t=[0:Nt]*dt; 
  
% solution will be arranged in a matrix Sol, with intermediate matrix 
% v. 



v=zeros(nstep,Nx+1); 
sol=zeros(solstep,Nx+1); 
  
f=.1*x.^2; 
  
% initial velocity u_t(x,0)=g(x) 
deri=0*x; 
% use the initial conditions to figure out solution 
% for t=0, t=dt. 
v(1,:)=f; 
sol(1,:)=f; 
v(2,:)=f+dt*deri; 
  
v(2,1)=0; 
  
  
breaker=0;                      %breaks the solution when it gets too 
big 
  
% This uses 2 for loops, one to calculate the main time step, the other 
% to calculate the intermediate time steps. 
lastk=0; 
for k=2:solstep 
    for j=3:nstep 
      % find solution at next time 
      for i=3:(Nx-1) 
          G=-(del-e*w^2*cos(w*(double(j)-1)*dt)); 
          Q=(1-i*dx); 
          v(j,i)=-C*(v(j-1,i+2)+v(j-1,i-2))+(alpha*G*(Q-dx/2)+4*C)*v(j-
1,i+1)+... 
          (alpha*G*(Q+dx/2)+4*C)*v(j-1,i-1)+(2-2*alpha*Q*G-6*C)*v(j-
1,i)-v(j-2,i); 
          if abs(v(j,i))>2 
            breaker=1;      %set up to break for nonphysical answers 
over 1 
          end 
      end 
      % Dirichlet and Neumann boundary condition at x=0 
      v(j,1)=0; 
      v(j,2)=1/4*v(j,3); 
      %2nd and 4th order Neumann boundary condition at x=L 
      v(j,Nx)=1/13*(40*v(j,Nx-1)-45*v(j,Nx-2)+22*v(j,Nx-3)-4*v(j,Nx-
4)); 
      v(j,Nx+1)=5/2*v(j,Nx)-2*v(j,Nx-1)+1/2*v(j,Nx-2); 
      if breaker==1 
          break; 
      end 
    lastj=j;   
    end 
     
    if breaker==1  
        break; 
    end; 
    sol(k,:)=v(nstep,:);    %gives sol the data from v 
    v(1,:)=v(nstep-1,:);    %resets v 



    v(2,:)=v(nstep,:); 
     
    lastk=k;            %saves the point it stops 
end 
  
  
  
figure(1) 
hold off 
%The data is then plotted as a movie 
for j=1:lastk 
  plot(sol(j,:),x) 
  axis([-.5 .5 0 L+.1]) 
  text(.1,1,[' Time = ',num2str(t(j*nstep))]); 
  M(j)=getframe; 
end 



% Fourthstring.m 5/6/2007 Devon Lafferty 
% 
% This program tries to solve the equation governing an upright stiff  
% string with an oscillating base. 
% A fourth order space finite diffference method was used, with 
equations  
% gained from Maple. However, the required timestep to 
% overcome the CFL condition seems to be too large for any reasonable 
data. 
% The memory is overflowed if you use only one matrix, so two matrices 
were 
% used, one to store the data, sol[t,x), the other to compute v[t,x].  
% It uses a second-order central differences in time. 
  
clear; 
L=1; 
  
Nx=10; 
dx=L/Nx; 
T=.01;       % final time 
Nt=3500000;      %number of actual time steps computed 
dt=T/Nt; 
alpha=(dt/dx)^2; 
tstep=.0001;    %time step to actually be shown 
nstep=int32(tstep*Nt/T); 
solstep=int32(T/tstep); 
  
  
  
%set physical constants 
g=9.8;          % acceleration due to gravity in m/s^2 
w=30;          % frequency of oscillation in radians/s 
m=.4;           % mass per unit length in kg/m 
  
  
  
%find the appropriate constants 
B=1.2; 
e=0; 
del=g/L; 
  
C=alpha*B*alpha/dt^2; 
a=alpha; 
  
  
  
% set up spatial and temporal grid 
x=[0:Nx]*dx; 
t=[0:Nt]*dt; 
  
% solution will be arranged in a matrix Sol, with intermediate matrix 
% v. 
v=zeros(nstep,Nx+1); 
sol=zeros(solstep,Nx+1); 



  
f=.001*x.^2; 
  
% initial velocity u_t(x,0)=g(x) 
deri=0*x; 
% use the initial conditions to figure out solution 
% for t=0, t=dt. 
v(1,:)=f; 
sol(1,:)=f; 
v(2,:)=f+dt*deri; 
  
v(2,1)=0; 
  
breaker=0;                      %breaks the solution when it gets too 
big 
  
% This uses 2 for loops, one to calculate the main time step, the other 
% to calculate the intermediate time steps. 
lastk=0; 
for k=2:solstep 
    for j=3:nstep 
      % find solution at next time 
      for i=4:(Nx-2) 
          G=-(del-e*w^2*cos(w*(double(j)-1)*dt)); 
          Q=(1-i*dx); 
          v(j,i)=C*v(j-1,i+3)/(6*dx^2)+(-G*dx^3*a+G*dx^2*a*Q-24*C)*v(j-
1,i+2)... 
              /(12*dx^2)+(8*G*dx^3*alpha-16*G*dx^2*alpha*Q+78*C)*v(j-
1,i+1)/(12*dx^2)... 
              +(24*dx^2-112*C+30*G*dx^2*alpha*Q)*v(j-1,i)/(12*dx^2)+... 
              (-16*G*dx^2*alpha*Q+78*B*alpha-8*G*dx^3*alpha)*v(j-1,i-
1)/(12*dx^2)... 
              +(G*dx^3*a+G*dx^2*a*Q-24*C)*v(j-1,i-2)/(12*dx^2)... 
              +C*v(j-1,i+3)/(6*dx^2)-v(j-2,i); 
          if abs(v(j,i))>1 
            breaker=1;      %set up to break for nonphysical answers 
over 1 
          end 
      end 
      % Dirichlet and 2nd Neumann boundary condition at x=0 
      v(j,1)=0; 
      v(j,2)=1/4*v(j,3); 
      G=-(del-e*w^2*cos(w*(double(j)-1)*dt)); 
      Q=(1-3*dx); 
      v(j,3)=-C*(v(j-1,3+2)+v(j-1,3-2))+(alpha*G*(Q-dx/2)+4*C)*v(j-
1,3+1)+... 
          (alpha*G*(Q+dx/2)+4*C)*v(j-1,3-1)+(2-2*alpha*Q*G-6*C)*v(j-
1,3)-v(j-2,3); 
      %2nd and 4th order Neumann boundary condition at x=L 
      Q=(1-(Nx-1)*dx); 
      v(j,Nx-1)=-C*(v(j-1,3+2)+v(j-1,3-2))+(alpha*G*(Q-dx/2)+4*C)*v(j-
1,3+1)+... 
          (alpha*G*(Q+dx/2)+4*C)*v(j-1,3-1)+(2-2*alpha*Q*G-6*C)*v(j-
1,3)-v(j-2,3); 
      v(j,Nx)=1/13*(40*v(j,Nx-1)-45*v(j,Nx-2)+22*v(j,Nx-3)-4*v(j,Nx-
4)); 



      v(j,Nx+1)=5/2*v(j,Nx)-2*v(j,Nx-1)+1/2*v(j,Nx-2); 
      if breaker==1 
          break; 
      end 
    lastj=j;   
    end 
     
    if breaker==1  
        break; 
    end; 
    sol(k,:)=v(nstep,:);    %gives sol the data from v 
    v(1,:)=v(nstep-1,:);    %resets v 
    v(2,:)=v(nstep,:); 
     
    lastk=k;                %saves the point it stops 
end 
  
%The data is then plotted as a movie 
figure(1) 
hold off 
  
for j=1:lastk 
  plot(sol(j,:),x) 
  axis([-.5 .5 0 L+.1]) 
  text(.1,1,[' Time = ',num2str(t(j*nstep))]); 
  M(j)=getframe; 
end 
 
 


