
Devon Lafferty

Math 164

Final Project

5/06/07

Inverted Stiff String: the Indian Rope Trick

1.1 INRODUCTION

Many seemingly simple physical systems encountered in life can have very interesting

and sometimes non-intuitive dynamics. Pendulums, one of the first systems studied by

young students, have been shown to have very interesting dynamics when their pivot

point is oscillated at high frequencies. With this modification, pendulums possess a

peculiar equilibrium state when they are inverted, or pointing vertically up.

It was later proven that even systems composed of multiple pendulums linked together

(double pendulums, triple pendulums, etc.) will also exhibit these dynamics. This

evidence suggests the intriguing thought that this inverted equilibrium may even be

present in the continuous case, when the number of pendulums goes to infinity – an ideal

string. Unfortunately, this hypothesis was mathematically disproved, as the required

frequency for stability was found to increase with the pendulum density.

However, the stable equilibrium in inverted strings, playfully named the “Indian Rope

Trick,” was found experimentally. This is because no real string is ideal, a possessing a

“stiffness” that resists bending. The goal in this paper is to numerically model the

linearized equations for an inverted “stiff” string and analyze its different properties.

1.2 MATHEMATICAL FORMULATION

We begin with a stiff, inextensible string of length L, held in the near upright position and

attached to an oscillator at its base. This oscillator moves according to

 tz 0cosωε= , (1)

assuming ε is small.

We will assume that the displacements u(s,t) of the string are small, such that

),(),(tzts uu ≈ (2)

Although this assumption quickly becomes invalid without a forced base, it should model

the equilibrium state for high oscillations.

The forces affecting the string at its base are gravity g and the force due to the oscillating

base, giving the equation

 tgF ωεωρ cos2−−= . (3)

For a perfectly upright string, the tension should vary along it, with tension being zero at

the free end. The function of tension along a string is then

Fig. 1. Inverted string definitions.

 ()()sLtgT −−−= ωεωρ cos2 (4)

Therefore, small horizontal perturbations u away from vertical will also possess

approximately the same tension, since u is perpendicular to the tension.

Now we apply the equation that governs the dynamics of inextensible strings,

 uu ′
∂
∂

=),(tsT
s

&&ρ , (5)

In order to find

()[]′′−






 −
−

−= uu st
L

g
1cos2 ωεω&&

Also, for our small perturbations, the x or y components donot affect the solution, only

total displacement, so),(),(tzutz =u .

g

ε cos ω0t

u

L

z

x

dyong
Pencil

Finally, we add in stiffness, which is a fourth order spatial derivative term, proportional

to the stiffness factor B.

We now have the governing equation:

 ()[] ''''1cos2 Buust
L

g
u −′′−







 −
−

−= ωεω&& . (6)

and the boundary conditions

 0=′= uu , at s =0 (7)
 0'''' ==′′ uu , at s = 1. (8)

COMPUTATIONAL RESULTS

Numerical simulations were run using Matlab
TM

 7.3.0.

It was difficult to determine which numerical method to use in order to model the

equations above, for a variety of reasons. The most important aspect of the model is

generating stable inverted solutions. Since we are dealing with a fourth order derivative

term, it seems necessary for the model to preserve terms of higher order. Thus, a method

made for preserving these terms like the pseudospectral method would have been ideal.

However, this problem lacks the periodic boundary conditions necessary for

implementation. Thus, a finite difference method was used.

Naïvely, a second-order finite difference method was first implemented to model the

dynamics. Stable solutions were found for ε > 0, so the numerical model does agree that

certain stable solutions exist. A sample graph is shown in Fig. 1. The frequency ω

controlled whether the solution was stable, with frequency below some threshold

allowing the string to fall.

For ε = 0, the string would fall to the left or right depending on initial conditions. In

addition, increasing the stiffness B caused the solutions to try and avoid bending in parts

of the string, which agrees with theory.

dyong
Pencil

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

Inverted String with an Oscillating Base

Displacement (m)

H
e

ig
h

t
(m

)

Grey Line, t=.005 s
Black Line, t=.875 s

Fig. 1. We see that for an oscillating base, the string has a stable equilibrium in its

upright position.

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

Inverted String with Stable Base

Displacement (m)

H
e

ig
h

t
(m

)

Gray Line, t = .005 s
Black Line, t = .875 s

Fig. 2. In this image, we see that for a base that does not oscillate, the string “fall” off.

However, there were some problems in the model that were nonphysical.

•" No matter how large stiffness B was increased, with ε = 0 the string would always fall

over to one side. Physically, a very rigid object that was held stationary at its bottom

without letting it swing would cause the object to remain upright. This is most likely

caused by the stiffness being modeled using a fourth order derivative term u’’’’.

Although this term creates stiffness for very quickly changing u, it still allows the

string to bend, as long as that bending is not fourth order. For example, even with an

infinite B, the string would still be allowed to bend into a parabola.

•" For stable solutions, increasing the B caused the string to oscillate farther away from

equilibrium. This is counter to the mathematical prediction that stiffness stabilizes a

solution. Most likely, this is due to the nonphysical model of stiffness.

•" For ε > 0, stable solutions were found even with B = 0. This again does not agree

with theory. Most likely, since a second-order finite difference method has error

O(h
2
), then fourth order derivative terms can arise. These error terms would then act

as a an extra B, letting B=0 does not truly remove stiffness.

•" When the time step size was changed, it altered the overall results, increasing the

amount of total time an oscillation would take. This is most likely also due to the

extra fourth order derivative terms, since these terms are proportional to the ratio of

∆x and ∆t.

The model itself had several caveats. First of all, the model required an extremely small

time step in order to avoid the Courant-Friedrichs-Levy condition. For fourth order

PDEs, this condition can be as stringent as

 .
4

C
x

t
<

∆
∆

 (9)

C for this model also was affected by the input frequency ω0 and the stiffness B. Thus,

any practical time resolved data required an enormous number of time steps, and the

number was sensitive to any changes in B and ω0.

A spatial fourth-order finite difference method was coded to attempt to analyze the

dynamics, but the required number of steps could no be determined. After attempting

extremely large time steps over an increasingly small total time, this method was

abandoned.

CONCLUSIONS

Despite the disappointing shortcomings of the model, it did predict that vertically

oscillating a string’s pivot point creates stable solutions in the inverted position, as long

as the frequency was above some threshold. This is promising, and was the original goal

of this project. If this project were to be continued, the next step would be to re-examine

the mathematical model (particularly the stiffness component). The model also needs to

be revised: the fourth-order finite difference method could be attempted on a faster or

more powerful computer capable of handling the required time steps, and other PDE

solving methods could be attempted.

REFERENCES

Acheson, D.J. “A Pendulum Theorem.” Proceedings: Mathematical and Physical

Sciences, Vol. 44, No. 1917, pp. 239-245. Oct 1993.

“Courant-Friedrichs-Lewy condition.” Wikipedia, the Free Encyclopedia. Accessed May

4, 2007. http://en.wikipedia.org/wiki/Courant-Friedrichs-Levy_condition

Champneys, Alan R. and Fraser, W. Barrie. “The ‘Indian Rope Trick’ for a

Parametrically Excited Flexible Rod: Linearized Analysis.” Proceedings: Mathematical

and Physical Sciences, Vol. 456, No. 1995, pp. 530-570. March 200.

Yong, Darryl. “Strings, Chains, and Ropes.” SIAM Review, Vol. 48, No. 4, pp. 771-781.

November 2006.

APPENDIX : MATLAB CODE

% 2ndstring.m 5/6/2007 Devon Lafferty
%
% This program tries to solve the equation governing an upright stiff
% string with an oscillating base.
% A second-order space finite diffference method was used, with
equations
% gained from Maple.
% Since only second order, problems arised due to higher order effects.
%
% It uses a second-order central differences in time.

clear;
L=1;
Nx=100;
dx=L/Nx;
T=5.0; % final time
Nt=800000; % %number of actual time steps
dt=T/Nt;
alpha=(dt/dx)^2;
tstep=.005; %time step to actually be shown
nstep=int32(tstep*Nt/T);
solstep=int32(T/tstep);

%set physical constants
g=9.8; % acceleration due to gravity in m/s^2
w=20; % frequency of oscillation in radians/s
m=.4; % mass per unit length in kg/m

%find the appropriate constants
%B=realB/(m*g*L^3);
B=0.2;
e=.1;
del=g/L;

C=alpha*del*B*alpha/dt^2;

% set up spatial and temporal grid
x=[0:Nx]*dx;
t=[0:Nt]*dt;

% solution will be arranged in a matrix Sol, with intermediate matrix
% v.

v=zeros(nstep,Nx+1);
sol=zeros(solstep,Nx+1);

f=.1*x.^2;

% initial velocity u_t(x,0)=g(x)
deri=0*x;
% use the initial conditions to figure out solution
% for t=0, t=dt.
v(1,:)=f;
sol(1,:)=f;
v(2,:)=f+dt*deri;

v(2,1)=0;

breaker=0; %breaks the solution when it gets too
big

% This uses 2 for loops, one to calculate the main time step, the other
% to calculate the intermediate time steps.
lastk=0;
for k=2:solstep
 for j=3:nstep
 % find solution at next time
 for i=3:(Nx-1)
 G=-(del-e*w^2*cos(w*(double(j)-1)*dt));
 Q=(1-i*dx);
 v(j,i)=-C*(v(j-1,i+2)+v(j-1,i-2))+(alpha*G*(Q-dx/2)+4*C)*v(j-
1,i+1)+...
 (alpha*G*(Q+dx/2)+4*C)*v(j-1,i-1)+(2-2*alpha*Q*G-6*C)*v(j-
1,i)-v(j-2,i);
 if abs(v(j,i))>2
 breaker=1; %set up to break for nonphysical answers
over 1
 end
 end
 % Dirichlet and Neumann boundary condition at x=0
 v(j,1)=0;
 v(j,2)=1/4*v(j,3);
 %2nd and 4th order Neumann boundary condition at x=L
 v(j,Nx)=1/13*(40*v(j,Nx-1)-45*v(j,Nx-2)+22*v(j,Nx-3)-4*v(j,Nx-
4));
 v(j,Nx+1)=5/2*v(j,Nx)-2*v(j,Nx-1)+1/2*v(j,Nx-2);
 if breaker==1
 break;
 end
 lastj=j;
 end

 if breaker==1
 break;
 end;
 sol(k,:)=v(nstep,:); %gives sol the data from v
 v(1,:)=v(nstep-1,:); %resets v

 v(2,:)=v(nstep,:);

 lastk=k; %saves the point it stops
end

figure(1)
hold off
%The data is then plotted as a movie
for j=1:lastk
 plot(sol(j,:),x)
 axis([-.5 .5 0 L+.1])
 text(.1,1,[' Time = ',num2str(t(j*nstep))]);
 M(j)=getframe;
end

% Fourthstring.m 5/6/2007 Devon Lafferty
%
% This program tries to solve the equation governing an upright stiff
% string with an oscillating base.
% A fourth order space finite diffference method was used, with
equations
% gained from Maple. However, the required timestep to
% overcome the CFL condition seems to be too large for any reasonable
data.
% The memory is overflowed if you use only one matrix, so two matrices
were
% used, one to store the data, sol[t,x), the other to compute v[t,x].
% It uses a second-order central differences in time.

clear;
L=1;

Nx=10;
dx=L/Nx;
T=.01; % final time
Nt=3500000; %number of actual time steps computed
dt=T/Nt;
alpha=(dt/dx)^2;
tstep=.0001; %time step to actually be shown
nstep=int32(tstep*Nt/T);
solstep=int32(T/tstep);

%set physical constants
g=9.8; % acceleration due to gravity in m/s^2
w=30; % frequency of oscillation in radians/s
m=.4; % mass per unit length in kg/m

%find the appropriate constants
B=1.2;
e=0;
del=g/L;

C=alpha*B*alpha/dt^2;
a=alpha;

% set up spatial and temporal grid
x=[0:Nx]*dx;
t=[0:Nt]*dt;

% solution will be arranged in a matrix Sol, with intermediate matrix
% v.
v=zeros(nstep,Nx+1);
sol=zeros(solstep,Nx+1);

f=.001*x.^2;

% initial velocity u_t(x,0)=g(x)
deri=0*x;
% use the initial conditions to figure out solution
% for t=0, t=dt.
v(1,:)=f;
sol(1,:)=f;
v(2,:)=f+dt*deri;

v(2,1)=0;

breaker=0; %breaks the solution when it gets too
big

% This uses 2 for loops, one to calculate the main time step, the other
% to calculate the intermediate time steps.
lastk=0;
for k=2:solstep
 for j=3:nstep
 % find solution at next time
 for i=4:(Nx-2)
 G=-(del-e*w^2*cos(w*(double(j)-1)*dt));
 Q=(1-i*dx);
 v(j,i)=C*v(j-1,i+3)/(6*dx^2)+(-G*dx^3*a+G*dx^2*a*Q-24*C)*v(j-
1,i+2)...
 /(12*dx^2)+(8*G*dx^3*alpha-16*G*dx^2*alpha*Q+78*C)*v(j-
1,i+1)/(12*dx^2)...
 +(24*dx^2-112*C+30*G*dx^2*alpha*Q)*v(j-1,i)/(12*dx^2)+...
 (-16*G*dx^2*alpha*Q+78*B*alpha-8*G*dx^3*alpha)*v(j-1,i-
1)/(12*dx^2)...
 +(G*dx^3*a+G*dx^2*a*Q-24*C)*v(j-1,i-2)/(12*dx^2)...
 +C*v(j-1,i+3)/(6*dx^2)-v(j-2,i);
 if abs(v(j,i))>1
 breaker=1; %set up to break for nonphysical answers
over 1
 end
 end
 % Dirichlet and 2nd Neumann boundary condition at x=0
 v(j,1)=0;
 v(j,2)=1/4*v(j,3);
 G=-(del-e*w^2*cos(w*(double(j)-1)*dt));
 Q=(1-3*dx);
 v(j,3)=-C*(v(j-1,3+2)+v(j-1,3-2))+(alpha*G*(Q-dx/2)+4*C)*v(j-
1,3+1)+...
 (alpha*G*(Q+dx/2)+4*C)*v(j-1,3-1)+(2-2*alpha*Q*G-6*C)*v(j-
1,3)-v(j-2,3);
 %2nd and 4th order Neumann boundary condition at x=L
 Q=(1-(Nx-1)*dx);
 v(j,Nx-1)=-C*(v(j-1,3+2)+v(j-1,3-2))+(alpha*G*(Q-dx/2)+4*C)*v(j-
1,3+1)+...
 (alpha*G*(Q+dx/2)+4*C)*v(j-1,3-1)+(2-2*alpha*Q*G-6*C)*v(j-
1,3)-v(j-2,3);
 v(j,Nx)=1/13*(40*v(j,Nx-1)-45*v(j,Nx-2)+22*v(j,Nx-3)-4*v(j,Nx-
4));

 v(j,Nx+1)=5/2*v(j,Nx)-2*v(j,Nx-1)+1/2*v(j,Nx-2);
 if breaker==1
 break;
 end
 lastj=j;
 end

 if breaker==1
 break;
 end;
 sol(k,:)=v(nstep,:); %gives sol the data from v
 v(1,:)=v(nstep-1,:); %resets v
 v(2,:)=v(nstep,:);

 lastk=k; %saves the point it stops
end

%The data is then plotted as a movie
figure(1)
hold off

for j=1:lastk
 plot(sol(j,:),x)
 axis([-.5 .5 0 L+.1])
 text(.1,1,[' Time = ',num2str(t(j*nstep))]);
 M(j)=getframe;
end

