

Beer Pong

Investigating scenarios and strategies

Maureen St Georges
Scientific Computing | Spring 2007

TARGETS

PROJECTILE

GOALS

- model projectile motion and bouncing motion of ping-pong ball
- explore probabilities of advantageous shots and racks

Angle necessary to reach a target (x, y) with initial velocity v:

$$\theta = \tan^{-1}\left(\frac{v^2 \pm \sqrt{v^4 - g(gx^2 + 2yv^2)}}{gx}\right)$$

MODEL

Velocity adjusted for air resistance:

```
(* Air resistance: *)
r = 0.03;
n = 1.8 * 10^(-5);
k = 6 * Pi * n * r;
m = 0.0027;
```

$$Vel[v_{x}] = v * e^{(-k/m*(x/v))};$$

Output Trajectory with initial velocity v and angle θ to reach target (x, y):

$$y = x \tan \theta - \frac{gx^2}{2v^2 \cos^2 \theta}$$

FUTURE WORK:

Bouncing & restitution coefficient:

vBounce = restCoef * Vel[v, xTarget]

Solution:

Mathematica's EventLocator

FUTURE WORK

\bigcirc 3rd dimension, ϕ :

FUTURE WORK

explore probabilities:

racks:

line racks

dense racks

shots:

arc

bounce

QUESTIONS?

?

