
HANDWRITTEN EQUATION INTELLIGENT CHARACTER
RECOGNITION WITH NEURAL NETWORKS

STEVEN SLOSS

Abstract. We seek to implement intelligent character recognition of hand-

written equations in a manner that allows for a computer program to translate
a user’s hand-drawn equation into formatted LATEX. We use a Kohonen neural

network fed by downsampled images to accomplish this task. While we were

able to achieve single-character recognition with a very low error rate, multiple
character recognition and whole equation recognition have proven elusive.

Contents

1. Introduction 1
2. Neural Networks Background 2
2.1. Biological to Artificial Neural Networks 2
2.2. The Neuron 3
2.3. Neuron Connection Weights 4
2.4. Neuron Firing Rules 4
2.5. Training Neural Networks 4
2.6. Validating Neural Networks 4
3. Kohonen Neural Networks 5
3.1. Training Kohonen Networks 6
3.2. Assigning Weights 6
4. Character Recognition with Kohonen Neural Networks 7
4.1. Single Character Recognition 8
5. Future Work 8
5.1. Multi-Character Recognition 9
5.2. Equation Recognition 9
6. Conclusion and Outlook 9
7. Acknowledgements 10
References 10

1. Introduction

While computers can generally perform many tasks far faster than humans,
humans are still vastly superior at other tasks, like categorizing, finding patterns,
and image recognition. (As a thought experiment, imagine teaching a two-year-old
how to identify what traffic lights mean, and then imagine teaching a computer to
do the same task.) Under the assumption that part of this ability is due to the

Date: 30 April 2007.

1



2 STEVEN SLOSS

structure of the human brains, artificial intelligence researchers created artificial
neural networks .

Biological neurons , as found in a brain, are interconnected through very complex
networks. They function by accepting a signal as an input and only transmitting
the signal to other neurons if the signal is sufficiently strong. Artificial neural
networks use an extremely similar structure (though often on a smaller scale), and
we can leverage this structure to “learn” pattern recognition in much the same
way as an animal brain. That is, artificial neural networks, like people, learn by
example. They are configured to a specific application through an involved learning
process which, as in their biological analogues, involves adjustments to the synaptic
connections between neurons.

In the case of this paper, the specific application is an attempt to use neural net-
works to perform intelligent character recognition on human handwritten equations,
automating the transformation of handwritten equations to LATEX.

2. Neural Networks Background

We will begin our discussion of handwriting recognition with a brief introduction
of the background and mechanics of artificial neural networks .

Neural networks, while apparently a fairly recent development, were actually
conceptualized before the advent of computers as we now know them. In fact,
McCulloch and Pitts, in 1943, developed models of neural networks based on the
understanding of neuroscience of the day. They thus made several simplifying as-
sumptions, but nevertheless produced neural networks that were capable of making
logical decisions (like A∧B or A∨B). It wasn’t until 1974, however, that Werbos
developed the currently popular notion of a backpropogating neural network and
thus popularized and revolutionized the field.

Figure 1. A single neuron in an biological neural network.

2.1. Biological to Artificial Neural Networks. There are numerous parallels
between artificial and biological neural networks . Much is still unknown about
how human brains train themselves to be able to process information, but current
theories state that both artificial and biological networks use neurons that are parts
of vast interconnected networks. A typical biological neuron accepts signals from
other neurons over a cluster of very fine structures known as dentrites . After
accepting the signal, that neuron may fire if its excitatory input is sufficiently large

dyong
Pencil



HANDWRITTEN EQUATION INTELLIGENT CHARACTER RECOGNITION WITH NEURAL NETWORKS3

compared to the background electrical activity. Upon firing, a signal is transmitted
over the axon terminals, over a structure known as a synapse , which converts the
excitation of the axon into electrical activity in neighboring neurons. Learning takes
place when the effectiveness of synapses in the brain changes, thereby changing the
influence of one neuron on another.

Computers, being digitial rather than analogue, function in an analagous though
distinct manner. We may then define what it means to be an artificial neuron.

Simply, a neuron is a straightforward device with multiple inputs and outputs
(see Figure 2). We define two modes of operation for the neuron - training mode
and operational mode . In training, the neuron is taught to fire or not fire for a
particular pattern of inputs. In the operational mode, the neuron is activated when
the current input matches the input for which it was trained. If the current input
is not exactly the input for which it was taught, a firing rule (discussed later) is
used to determine whether to fire.

Artificial neural networks (hereafter neural networks) have the advantages of
being able to learn adaptively (i.e. they can learn how to perform tasks based
on some initial experience), being self-organizing, and being exceptionally good at
finding solutions when there is no clear set of steps to find the answer.

Neural networks are, however, not particularly suited to solving deterministic
problems, problems whose solutions can be easily diagrammed on a flowchart, where
the logic of the program is likely to change, or where it is necessary to know ex-
actly how the solution was derived. They are, however, extremely adept at solving
problems that cannot be solved as a finite series of steps, or that deal with pattern
recognition or classification.

Figure 2. A single neuron in an artificial neural network. From [1].

2.2. The Neuron. An artificial neuron is a very simple computational device with
many inputs and outputs. We can represent a single neuron as in Figure 2. It

dyong
Pencil



4 STEVEN SLOSS

recieves input either from other neurons or the program’s input. When the sum of
the inputs reaches some level, it is said to “fire,” that is, it sends signals to other
neurons.

2.3. Neuron Connection Weights. As we mentioned before, neurons are con-
nected together by “synapses.” Note, however, that not all of these connections are
created equal – each connection is assigned a weight. It is these weights that allow
the neural network to recognize certain patterns. Adjusting the weights of a neural
network will result in it recognizing a different pattern. Thus, when we train a
neural network, we are merely adjusting the weights between neurons.

2.4. Neuron Firing Rules. Firing rules, the set of rules that determine whether a
particular neuron fires, are an extremely important component of a neural network,
and much research in the field has focused on finding firing rules that apply to
generalized neural network problems. (Note that firing rules may also be known as
activation functions).

Consider a single neuron, connected to a number of other neurons. Then when
the sum of the inputs

i =
∑

k

wkxk

where w represents the weights between this neuron and the other k neurons and x
is the input to this neuron from other neurons, exceeds some threshold value, the
neuron “fires.” There are several popular activation functions, like Sigmoid, but we
use hyperbolic tangent in our application, as we experimentally found this to have
the lowest error rate.

2.5. Training Neural Networks. Recall that individual neurons in the neural
network are connected through the synapses, which allows neurons to signal each
other as an input is passed back and forth. Each of these connections has a weight,
and that “training” a neural network is merely the process of adjusting these weights
so that the proper neurons fire given a specific input to produce the correct out-
put. In fact, this segment of neural network design is analogous to an enormous
optimization problem and thus draws on lessons learned in other mathematics and
computer science optimization research.

There are two main paradigms in neural network training – supervised learning
and unsupervised learning. In supervised learning, we give the neural network
training data in pairs (x, y), where x is an input and y is the corresponding correct
solution. Our aim is then to minimize the error (usually given as the mean squared
error) of the neural network.

Unsupervised learning takes place when we have no corresponding correct solu-
tion for each input that the neural network is trained on, and we wish for the neural
network to classify its inputs into a specific number of groups. Our application uses
unsupervised learning.

2.6. Validating Neural Networks. It is extremely easy for a neural network’s
training to have found a corner case. That is, our training may have caused the
neural network to return the correct output solely for the input we trained it on,
which is obviously of very limited utility. Therefore, it it necessary to validate a
neural network, to check that it is fit for use in a more general setting. This step



HANDWRITTEN EQUATION INTELLIGENT CHARACTER RECOGNITION WITH NEURAL NETWORKS5

is generally also used to determine whether we may cease training, or if the neural
network requires further epochs of training.

In general, the process for this requires separation of the training data and
validation data. Generally, half the training data trains the network to recognize a
valid input, and we use the other half to verify that the neural network produces
generally correct solutions (i.e. that it is valid).

3. Kohonen Neural Networks

Pattern recognition with neural networks is normally done with a feed-forward
neural network , which were the first types of neural networks devised, and remain
among the simplest and most useful. The name refers to the requirement that
information move in only one direction through the neural network – forward from
the input nodes, through the hidden nodes (if they exist in the particular network),
and to the output nodes. A feedforward network can thus be equivalently defined
by requiring that there be no cycles in the network.

We, however, use a Kohonen neural network, named after Tuevo Kohonen, which
contains no hidden layers and handles output slightly differently than the general-
ized neural networks we described above. It also does not use an firing rule, and
does not include bias weights along neuron pathways.

The input to our neural network consists of floating point numbers, normalized
to a range of [−1, 1]. Whereas the output of a normal neural network consists
of output from all of the output neurons, in our version of a Kohonen network, a
“winner” neuron is chosen from the set of output neurons that represents the output
of the network. For example, if we were to train the program to recognize all capital
letters from the English alphabet, we would have a Kohonen neural network with
26 output neurons (which map to the letters of the alphabet), from which a winner
is chosen when we recognize a character.

We chose a Kohonen network because it is a particularly simple network whose
training and recognition progress very rapidly, which is a benefit in a real-time
application like the one we are attempting to solve.

Figure 3. A simple example of a Kohonen Neural Network. From [3].



6 STEVEN SLOSS

For clarity, we will proceed with an example of a very simple Kohonen neural
network. Consider the network in Figure 3. Let the inputs be defined as in Table
1 and the connection weights between neurons be defined as in 2 (recall that these
values would have been set during training).

Table 1. Example Kohonen Neural Network Inputs

Input Neuron 1 (I1) 0.5
Input Neuron 2 (I2) 0.75

Recall that the input needs to be normalized between [−1, 1]. We calculate the
“vector length” of the input vector by summing the squares of the input:

L = (0.5 · 0.5) + (0.75 · 0.75) = 0.8125

which then gives us a normalization factor of 1√
0.8125

= 1.1094.
To calculate the output of each neuron, we first take the dot product of the input

neuron vector and their connection weights, multiplied by the normalization factor(
0.5 0.75

)
·
(

0.1 0.2
)
· 1√

0.8125
= 0.395 · 1.1094 = 0.438213

Table 2. Example Kohonen Neural Network Connection Weights

I1 → O1 0.1
I2 → O1 0.2
I1 → O2 0.3
I2 → O2 0.4

(note that the calculation for the second output neuron follows in precisely the
same way, and will have a value of 0.0465948). In this case, we choose a winner by
choosing the output which has the highest value, which is clearly the first neuron.

3.1. Training Kohonen Networks. Like most neural networks, training a Ko-
honen neural networkinvolves iterating through several epochs until the the overall
error is below some defined threshold. Kohonen neural networks use unsupervised
training.

The difference lies in the way weights are adjusted – in training a Kohonen neural
network, one neuron will “win,” resulting in its weight being adjusted to react even
more strongly to that particular input. Thus, as different neurons are chosen as the
winner for different patterns, their ability to recognize their specific patterns will
be increased. We can summarize this process as an activity diagram in Figure 4.

3.2. Assigning Weights. There are two traditional methods for adjusting the
weights within a Kohonen neural network– the additive method and the subtractive
method. Kohonen proposed the additive method, which is defined by

wi+1 =
wi + αx

|wi + αx|
where wi is the weight of the winning neuron in a particular training cycle, wi+1

is the new weight, x is the training vector presented to the network, and α is some
weight.



HANDWRITTEN EQUATION INTELLIGENT CHARACTER RECOGNITION WITH NEURAL NETWORKS7

Figure 4. The training process for a Kohonen neural network.
From [3].

Alternatively, if the additive method fails to converge, we may use the subtractive
method,

wi+1 = wi + α
(
x− wi

)
.

For the purposes of this project, the additive method suffices.

4. Character Recognition with Kohonen Neural Networks

With that background in neural networks and Kohonen neural networks, we may
begin to implement a neural network application to perform intelligent character
recognition, that is, transforming human handwriting into a format that a computer
can recognize. The framework consists of approximately 3,000 lines of Java that
implement a drawing area, a Kohonen neural network, a generic neural network
superclass, functionality to downsample user-drawn images, and support for loading
and saving of training sets for neural networks.

We may generally break up the problem of transforming handwritten equations
into LATEX into three parts: single character recognition with a neural network, mul-
tiple character recognition (e.g. sentence recognition), and positional recognition
(to recognize such things as exponents).



8 STEVEN SLOSS

4.1. Single Character Recognition. We first approach the most complex of the
three sub-problems, single character recognition. Given a user-drawn image repre-
senting a character, we must convert this image into a format a neural network can
understand, feed this data into a neural network constructed and trained such that
it can recognize characters, and then transform the output of the neural network
into something useful.

We have used Java to create an application and an extensible framework to be
used for character recognition. We construct an extension of the Java SWING
JPanel to support user drawing, and then store the user-drawn character as a Java
Image object. We then construct a bounding box around the character to do away
with excess white space, and then we downsample the image to a double array of
boolean values (here “true” represents a pixel that has been drawn in) to feed to
the neural network. Experimentally, we found that a 5×7 grid has the lowest error
rate. Actual implementation issues, which comprised the vast majority of time
spent on the project, are beyond the scope of this discussion.

This boolean double-array is passed to a Kohonen neural network, which was
trained on similar boolean arrays to recognize characters of the alphabet. As de-
scribed in the previous section, the winning output neuron maps to the character
that the neural network believes most closely resembles what the user drew.

This backend was attached to a Java SWING graphical user interface for the
purposes of demonstrating the capabilities of the neural network at this stage in
the project. It is shown in Figure 4.1.

Figure 5. The graphical user interface to the single-character
recognition component of the project.

5. Future Work

It should be a tractable task to extend the knowledge gleaned from this research
and transform it into an equation recognition system. Though the implementation



HANDWRITTEN EQUATION INTELLIGENT CHARACTER RECOGNITION WITH NEURAL NETWORKS9

has not been completed due to difficulties with Java, we may outline the approach
for the remaining two steps that must be completed in order to create a handwriting
to LATEX system.

5.1. Multi-Character Recognition. Multiple character (e.g. sentence) recogni-
tion will not require the use of a neural network, and is merely a problem of image
processing. In general, instead of finding a bounding box for a single character,
we find a bounding box around each of the multiple characters that a user draws.
Each of these characters is then fed into the neural network character recognition
framework separately. In finding bounding boxes for each of the drawn characters,
we make the assumption that no character is connected to another. We, however,
believe this is a valid assumption for the scope of this project, as through our user
testing, we never observed a person who writes mathematics in script.

We visualize the multiple bounding boxes approach in Figure 6.

Figure 6. A rendering of the process of finding a bounding box
for each drawn character. Each of these characters would then be
recognized by a Kohonen neural network.

5.2. Equation Recognition. Recognizing entire equations will be a much more
complex process than recognizing simple English phrases. There are two primary
problems that need to be solved when performing whole-equation recognition: to-
kenization of the equation and positional character recognition.

With positional character recognition, when we find bounding boxes for each
character the user writes, we also record the size and position of each character.
Thus, for 24, along with the characters 2 and 4, we would record that the 4 is
slightly above and smaller than its neighboring characters. This position and size
data would be fed into a second neural network, which would be trained to map
character positions and sizes into exponents, subscripts, fractions, and the like. In
trying to develop such a system, fractions have proved to be a problem with this
method, and we know of no solutions.

Also, since math as it is hand-written and math as it is represented in LATEX
does not exactly correspond, we must tokenize and then parse the results of the
neural network runs such that we may translate them into LATEX source. This is an
extremely solvable problem, as written mathematics already has very well defined
parse trees.

6. Conclusion and Outlook

From experiments with users, our single-character recognition system was able
to achieve a 94.3% success rate with generalized handwriting training data and
96.2% when trained with a particular user’s handwriting.

The goal of this project was to push neural networks into a territory that they
had thus far not been used to explore. While we have, as of writing, not been



10 STEVEN SLOSS

able to complete a translation from handwriting to LATEX, we believe that given
the approaches outlined to solve the multiple character recognition and positional
recognition problems, allowing a neural network system to translate between It
is our belief that, while this has been accomplished with other domain-specific
intelligent character recognition techniques, this would be the first time anyone has
accomplished handwritten equation recognition with neural networks.

7. Acknowledgements

I would first like to thank Professor Yong for his wonderful Scientific Computing
class that gave me the confidence and skills to tackle this project.

I would also like to extend my gratitude to the residents of East Dorm, who
provided me with invaluable assistance in training the neural network to recognize
a variety of handwriting styles.

References

[1] http://www.xplore-stat.de/tutorials/xlghtmlimg565.gif

[2] http://commons.wikimedia.org/wiki/Image:Neuron.svg

[3] Heaton, Jeff T. Introduction to Neural Networks with Java. New York: Heaton Research,
Inc. 2005.

[4] Zomaya, Albert Y., ed. Handbook of Nature-Inspired and Innovative Computing: Integrating

Classical Models with Emerging Technologies. New York: Springer Science+Business Media,
2006.

http://www.xplore-stat.de/tutorials/xlghtmlimg565.gif
http://commons.wikimedia.org/wiki/Image:Neuron.svg

	1. Introduction
	2. Neural Networks Background
	2.1. Biological to Artificial Neural Networks
	2.2. The Neuron
	2.3. Neuron Connection Weights
	2.4. Neuron Firing Rules
	2.5. Training Neural Networks
	2.6. Validating Neural Networks

	3. Kohonen Neural Networks
	3.1. Training Kohonen Networks
	3.2. Assigning Weights

	4. Character Recognition with Kohonen Neural Networks
	4.1. Single Character Recognition

	5. Future Work
	5.1. Multi-Character Recognition
	5.2. Equation Recognition

	6. Conclusion and Outlook
	7. Acknowledgements
	References

