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1 Introduction

Options, the right to buy or sell a stock at a certain price regardless of the
actual value, have provided investors with a highly leveraged, high risk market
for many years. People often hedge their portfolios with options as a means to
further increase yields or limit losses.

There are two types of options. The first is a call option, which gives the
holder the right to buy a stock for at the strike price, where the strike price
is the amount the stock will be sold for. Thus if you were to own the 85 call
for IBM, you would only have to pay $85 even though the stock is currently
trading at $95. A put option gives the holder the right to sell the stock at the
strike price. If you had the 85 put for IBM and the stock plummeted to $70,
you would still be paid $85 per share.

However, options are not indefinite contracts and have exercise dates asso-
ciated with them. You can often find options for stocks with exercise dates for
the next several months, and oftentimes as far as a year or two away. This gives
the investor many different choices to make in her investment strategy.

An option can also be either “in-the-money” or “out-of-the-money”, depend-
ing on whether the option is a call or put and if the strike price is above or below
the current market value of the stock. A call is said to be in-the-money if the
strike price is below the stock price, and out-of-the-money if it is above. The
terms are opposite for puts. Clearly an in-the-money option should be worth,
or cost, more than an out-of-the-money option because it would not make sense
to exercise a 100 call for IBM when you could buy it on the market for $95.

We can also refer to “American”, “Bermudan”, or “European” options (there
are many other choices but these are the three most common). As mentioned,
an option has an expiration date where it is either exercised, and the stock
changes hands, or it expires worthless because the stock never reached a price
where the option was in-the-money. A European option is one where the holder
is only allowed to exercise the option on the expiration date. On the other hand,
an American option allows the holder to exercise it whenever she would like as



long as it is in-the-money. A Bermudan option falls somewhere in between as
it usually has one day per month that it can be exercised early as opposed to
the final day.

This concept introduces us to the premium on the price of the option. The
premium is simply an amount of money that the person selling the option tacks
onto the value in order to compensate them for the risk involved. Again, think-
ing logically, it does not make sense that a person would sell an option for the
same value of the stock. In the IBM case, an 85 call would not be worth merely
the $10 between the stock and strike price, but, since it is in-the-money, it would
have a premium tacked on to take it to $10.50. This additional $0.50 is the only
motivation that the person selling the option has, otherwise they would just
hold on to the stock themselves.

But how much should this premium be? We can establish some general
guidelines that help us to determine how much it should cost.

e The longer to the expiration date, the higher the premium This
makes sense, because a longer amount of time would make it more likely
that the option would become in-the-money.

e The farther from at-the-money an option is, the lower the pre-
mium As you get deeper in, or out of, the money, you approach an option
that is either equivalent to a share of stock itself or that has no chance of
ever being valuable, and thus it should be priced as such.

e The higher the volatility of the stock, the higher the premium
Volatility is a measure of how much a stock’s price can change, so the
higher it is means that it could easily jump above the strike price and
become valuable.

e The higher the risk-free yield, the lower the premium As the risk-
free return increases, the opportunity cost of buying the option rises. The
premium must drop otherwise there would be no market as buyers would
rather have a guaranteed return than a risky one.

While these help us understand general trends in the final price, they are by no
means an absolute. So how exactly should we determine what the price of an
option should be?

2 The Black-Scholes Model

In a 1973 paper titled The pricing of options and corporate liabilities, Fischer
Black and Myron Scholes described a PDE that determined the value of an
option. Beginning with It6’s Lemma, a formula for the differential of a function
for a stochastic process, they were able to modify it to the financial world and
create a PDE that could accurately price stock options.

Let us first outline some assumptions that are inherent in the derivation and
performance of the Black-Scholes PDE that we will be working with:



e The stock price follows a lognormal random walk This implies
that the change in price of a stock will follow a lognormal probability
distribution.

e The risk-free rate of return r and stock volatility ¢ are known
and constant Here r is the guaranteed return from something like a bank
account, and o measures the standard deviation of the returns from the
stock.

e The stock pays no dividends Many stocks pay dividends, which is a
direct payment to the holder in terms of a percentage of the amount of
stock owned.

e There are no opportunities for arbitrage This statement means that
any opportunity for risk-free profit above r will be instantly corrected by
a shift in prices.

e Trading of stocks is constant and liquid There are no restrictions
to when you can buy or sell a stock and there is always a market. This
allows us to make later assumptions on the continuity of functions.

Black and Scholes were able to take these assumptions, as well as the behavior
of the premiums that were on the market, and transform them to a PDE. Using
It6’s Lemma, which governs the development of a certain form of stochastic
PDEs, they were able to develop the famous Black-Scholes equation,
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For a full derivation, see [1] or [2].

2.1 The European Put Option

Let us define the value of a European put option to be P(S,t). Note that
the Black-Scholes equation was derived for all options, so we merely replace
the value of any option V(S,t) with P(S,t¢). Let T be the expiration date of
the option. As mentioned before, a European option may be exercised on this
day alone. In this case we have a well-defined PDE with absolute boundary
conditions.

On the expiration date, ¢t = T the final payoff is

P(S,T) = max(E — S,0) 2)

where F is the exercise price. This gives us a final boundary condition. Now
let us assume that if S — 0, then it will be stuck there, as the only time this
could happen is if the company disassembles or is delisted. This provides us
with another boundary condition of

P(0,t) = Ee~"(T7Y), (3)



This is a payoff that is slightly discounted by the amount of time remaining
until the expiration date, T'— ¢t and the risk-free rate of return r. Finally, if the
value of the stock increases without bound our chances of being able to exercise
our put for a profit decrease, giving us

P(S,t) -0 as S — . (4)

With these known boundary conditions, we can actually find a closed form
solution for the European option [?]. The solution takes on the form

P(S,t) = Be " T"YN(—dy) — SN(—d;) (5)
where N(-) is the cumulative distribution function for the normal distribution

and
_ log(S/E) + (r+0%/2)(T — 1)

d oV —t
and
dy — log(S/E) + (r — 02 /2)(T —t)
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2.2 Transformation of Variables

Through a simple transformation of variables [2], the Black-Scholes equation
can be transformed into the diffusion equation. While we are not necessarily
concerned with the end result, the transformation of variables ends up being
very useful when we look to solve the free-boundary version of Black-Scholes for
an American option. Recall the European put option:
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with
P(S,T) = max(E — 5,0), P(0,t) = Ee™"(T)

and
P(S,t) -0 as S — oc.

Let us now consider the change of variables,

S=Ec", t=T- 1, P=Eu(x,1). (7)
50’
This changes the Black-Scholes equation to
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where k = T3 This modifies the initial condition to be
2

v(x,0) = max(e® — 1,0).



We see that k is a dimensionless constant, and it along with the dimensionless
time to maturity %UQT are the only two independent parameters in the model.
If we now let

v = 6az+ﬁ7u(

z,7)

we find that ) )
_ = _ _ _ - 2
a= 2(k 1), g 4(/€+1) .

With only a slight continuation of the algebra, we would arrive at the diffusion
equation. However, this is far enough for our purposes.

3 The American Put Option

As mentioned, American options differ in that the holder can exercise at any
point before the maturity date. The effect of this right is to change the strict
equality found in (2) to

P(S,t) > max(E — S,0). (8)

The reason behind this falls under our assumption that there are no arbitrage
opportunities. If P was able to fall below max(E — S,0), you could make a
profit by buying the stock at S and the option at P and exercise the option at
E. This would lead to a risk-free profit of £ — P — S.

The difference between an American option and an European option lies
when P(S,t) > max(E — S,0). This is the point at which it is more profitable
to exercise the option early, at some time t. We also see that herein lies the more
complicated nature of the American option, as we are left to not only determine
the value, but also if it should be exercised for each value of S. A further point
can be made that for the simpler case of the European option, a closed form
solution has been found and well documented. We can bypass all numerical
approximations and simply plug and chug our way to a solution. However, at
present time, no closed form solution for the American option exists (a solution
has claimed to have been found by Song-Ping Zhu).

This same argument now causes a slight modification to the Black-Scholes
equation (6) itself. Rather than being a strict equality, we now have another
inequality. It now becomes,

P 1 ’p P
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Let us denote Sf(t) as the optimal exercise price as it varies with time.
This point marks the change from being more profitable to hold to being more
profitable to exercise early. Since we do not know what this value is or at what
time the best can be found, we are faced with a significantly more difficult

problem than in the European option.



We can now split the Black-Scholes equation into two distinct regions and a
point. The first region, 0 < S < S¢(t) gives us

B OP 1 , ,0°P 0P

This is the region where early exercise is optimal. The second, where holding is
the best strategy, is found when S¢(t) < Soo. This corresponds to the PDE

orP 1 0%P oP
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Finally, we have the condition at S = S;(¢). This gives us the constraints

P
P(Sy(0),1) = max(B — Sy(1),0), 92 (Sy(0),1) = 1.
We can show that g—ISD(S 7(t),t) = —1 explicitly otherwise we would once again

face an arbitrage situation.

At this point, the work relies heavily on [2] and [3]. When we originally ap-
proached the problem, several attempts at solving and coding the problem were
made. Some were original, and others followed different methods outlined in [4].
However, after the sources [2] and [3], we arrived at a deeper understanding of
the problem.

Our original attempts failed to capture the importance of the free-boundary
problem and the methods outlined in [4] did not deal with them properly. Once
these two alternate sources were found though, they provided an explanation
of the problem, as well as methods to solve it. At this stage we used the two
sources as a guidebook, and followed their suggestions.

Unfortunately, the books were designed more for financially inclined people
and sometimes skim past important mathematical details, such as the conver-
gence of the Projected Successive Over-Relaxation (SOR) method described in
Section 4.1. We were unable to find an explanation in the sources we had or
alternate sources that could explain the methods in greater detail.

There are several methods that can now be used to solve the American
option. Binomial and trinomial trees can be used to approximate a random
walk which follows the general tendencies of the asset [3]. That is, the overall
value of the stock will grow at a rate consistent with expectations but at any
given time step there will be a probability for it to decrease or increase in value
by a given amount.

However, one of the most common methods that is presently used is using
finite differences to make a mesh for the PDE, and then solving for the values
using standard finite difference approximations. As we have seen, there are
many different relations that can be used, such as forward difference (explicit),
backward difference (implicit), Crank-Nicolson (implicit), and others. Any one
of these methods could be used to find a solution, but they have their individual
advantages and disadvantages.



The forward difference method is a very simple technique that is easy to
implement, but it has an inherent instability that can easily cause solution
values to diverge from the proper number. The backward difference method
does much to correct the instability issue. The Crank-Nicolson (CN) method
is an average of the backward and forward difference methods. It is a very
stable method that is second-order accurate. Luckily, [2] provides a method to
implement the CN method with the transformation of variables found in Section
2.2. We can see from [2] that the CN method actually becomes quite simple to
implement and offers better accuracy and stability over the other two methods.
Using MATLAB specific techniques, such as sparse matrices and the backslash
operator, we can keep the runtime to a very acceptable level.

When we choose the CN approach, we also find that it is much simpler to
transform the PDE into another form [3]. This step of the process is to find a
linear complementarity problem for the American put. By doing so we remove
the free-boundary, which makes a solution much easier to compute. After we
solve the analogous problem, we can recover the free-boundary and the relevant
solutions. Using the transformation of variables discussed in (7), we can do just
this.

The transformation for the optimal exercise boundary becomes x = x (7).
Since we assumed Sy(t) < 0 we also have z;(r) < 0. The payoff function
becomes

gz, 7) = e (DT ax (e%(k_l)” — ezt 0) . (10)
This gives us the PDE
2
% :% for & > (1) (11)
u(z, ) =g(z,7) for & < zs(7) (12)
and initial condition
u(2,0) = g(x,0) = max (e3(h=17 — (4107 ) (13)
and the limit
lim w(z,7) = 0. (14)

We also assume that v and % are continuous.
Transforming this into linear complementarity form gives us

ou  O%u
(52~ 528 ) -(ut) - gt ) 0. (15)
ou  O%u

= _Z > — > 0.
oSz 0, (uw ) —gle,) 20 (16)
This set of equations is also accompanied by the initial and boundary conditions
u(z,0) = g(x,0) (17)
u(—a~,7) =g(-27,7) = u(z, 1) = g(a*,7) =0 (18)



where —2~ and x1 are the endpoints of the interval under consideration. Now
we are at a point where we can begin to solve the problem.

4 MATLAB Implementation

As we know, we can easily divide up a space-time problem into a mesh grid.
This allows us to discretize the problem and use common scientific computing
methods to find a solution. For the solution algorithm, we use a combination
of the Crank-Nicolson and SOR algorithms. Let u;' denote the solution at
u(ndz,mét). Let x = ndx for N~ < n < Nt and 7 = mdr . Using the
Crank-Nicolson method we have

0 mtl _ oy,
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or oT

and
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L (g = 2l
g (MR o). o

Dropping our error terms, the first inequality (15) becomes

1 1
Uan - 50‘(“;”:_11 - QUTH + “ZL—Jrll) > Uy + Qa(unmﬂ —2up" +ugy)  (21)
where o = 5‘%. This also gives us the general form of the payoff function,

g = g(ndx,mdt). For the boundary conditions we have

W =GR, ul = g, ud = g (22)
If we let Z]" be
1
2 = (1= a)ugt + Ga(ufly +uly) (23
then 21 becomes
1
(14 e)up ™t - ia(ﬁ;ﬁl +up ) > 27 (24)

We can now turn this formulation into a linear algebra problem. Let
UN-11 IN-11
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Note that we do not need to include the terms u'y_ and uly, as they are ex-
plicitly defined by the boundary conditions in (22). Let b™ be defined by

bN- 41 IN-41 gutt
s s oo
b™ = by’ = zg + g0 : (26)
z z 0
m—+1
b+ 1 2N+ In+

We can now begin to see how the matrix operations of the problem will
take shape. The Crank-Nicolson method gives us a (NT — N~ — 1)-square,
tridiagonal, symmetric matrix C which is found to be

1+« —%a 0 0
—%a 1+« —%a :
C = 0 “la - 0 (27)
1+« —%a
0 0 —ia l+a

This lets us rewrite our linear complementarity problem (15) into

Cu™t! >p™m, umtl > gmnt! (uerl - gm+1) . (Cuerl —b™)=0. (28)
Now we see where the time-steps arise: each vector u™*! can be calculated
from b™. With each u™ we can calculate b™. To step through these loops, we
use the projected SOR method.

4.1 The Projected SOR Method

There are two main approaches to the time-stepping portion of the grid, which
are outlined in [2]. The first is to solve the linear system by using a technique
such as the LU-decomposition. This method allows for very quick methods of
solving the system for the European option. However, this method, which is a
direct method, is difficult to transform to the American option and nonlinear
problems which could include transaction costs [3].

Our other option is an iterative method, of which there are several. These
methods use a guess which is gradually improved to reach the exact solution.
While these are slower than a direct method for the same problem, such as a
European option, they are easily extendable to the American option [2]. Two
iterative methods are the Jacobi and Gauss-Seidel methods. Both are used to
iterate through to the exact solution. However, the Projected SOR method,
which is actually a refinement of the Gauss-Seidel method [3], can significantly
speed up the rate of convergence and require many less iterations. This signifi-
cantly reduces runtime [3].



Herein lies one of the foggy parts of the methods outlined in [2]. As Professor
Yong has mentioned, the LU method, as well as the iterative methods mentioned
above, are used to solve linear systems of equations. By transforming the Black-
Scholes equation to the linear complementarity problem, [2] appears to use the
SOR method to solve it. They state that these two problems are equivalent,
but unfortunately offer no proof, as it is beyond the scope of their book. In the
end, we decided to use the SOR method on the word of [2] and [3] as it provided
what appeared to be the best approach to solve the problem.

As mentioned, we use an iterative time-stepping algorithm to find a proper
solution for u/ from [2]. In this case let u™* be defined as the kth iterate of
u™. This implies that the next solution would be u”**1. Let the initial guess
for u™*! be the value from the previous step, namely u™. This gives us that

n

m+1,0 _ ,m m,k m
up ™Y =y As k — oo, uptt — ult.

Now we can see that, as defined above, u"* — u™ as k increases. How-
ever, by multiplying by a scalar greater than one, we can significantly speed up
the convergence. This is the idea behind the SOR method. From the Crank-

Nicolson method we can let

1 1 m k m k
ym LA+l T a (bnm + §a(un_+11’ ottt )) : (29)

Then we have

uz’b-‘rl,k-‘rl Z@-i—l,k-‘rl o u?-ﬁ-l,k) m-‘rl). (30)

= max(up 1 + w(y '

In this case, w(ymT1*+1 —ym+LE) can be thought of as a correction factor, that

helps to converge onto u7*T1. By letting 1 < w < 2 we over-correct and speed
up the process. Once the factor being added each step becomes significantly
small, we say the solution has converged and return the value for v +1.

This is also the point where we find the differences between American,
Bermudan, and European options. In equation 30, we are determining whether
it is better to exercise the option early or to hold it by taking the max of the
two values. For the American option, we always make this comparison whereas
for the European we never do. The Bermudan is once again a mixture, where
we make the comparison on specified time steps.

The code implementing both the Crank-Nicolson and Projected SOR meth-
ods as outlined in [2] can be found in the appendix.

4.2 Results

By using built in techniques that look to optimize performance, such as sparse
matrices, the code is incredibly efficient. When we let N = 1000 and M = 800,
a solution is returned in less than half a second. They are also very accurate.
Let us consider an American put with a strike price of $10, r = 0.1, ¢ = 0.4,
with times to maturity of three and six months.

As we can see in the first chart 4.2, overall performance compared to the
book [2] is quite good. The largest error, found when the asset price is $16 with
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Asset Price | Payoff Value % Book % Book
2.00 8.0000 8.0023 8.0000 8.0023 8.0000
4.00 6.0000 5.9971 6.0000 5.9971 6.0000
6.00 4.0000 4.0019 4.0000 4.0019 4.0000
8.00 2.0000 2.0230 2.0200 2.0970 2.0951
10.00 0.0000 0.6871 0.6913 0.9156 0.9211
12.00 0.0000 0.1734 0.1711 0.3642 0.3622
14.00 0.0000 0.0330 0.0332 0.1312 0.1320
16.00 0.0000 0.0055 0.0053 0.0448 0.0460

Figure 1: Chart 1

Asset Price | Payoff Value % Exact % Exact
2.00 8.0000 7.7554 7.7531 7.5161 7.5123
4.00 6.0000 5.7503 5.7531 5.5104 5.5128
6.00 4.0000 3.7589 | 3.7569 3.5604 | 3.5583
8.00 2.0000 1.9049 1.9024 1.9198 1.9181
10.00 0.0000 0.6644 0.6694 0.8651 0.8703
12.00 0.0000 0.1696 | 0.1675 0.3499 | 0.3477
14.00 0.0000 0.0325 0.0326 0.1273 | 0.1279
16.00 0.0000 0.0053 | 0.0054 | 0.0437 | 0.0448

Figure 2: Chart 2

three months to maturity, is 3.6%. The average error for the entire chart is
0.7%.

We can also compare out results for the European option with those calcu-
lated directly from the closed form solution in the second chart 4.2. For the
same specifications as above but simply a European option we find that our
results are once again very accurate. The average error for the entire chart is
0.6% with the largest error found at an asset price of $16 with three months to
go of 2.5%.

4.2.1 Order of Accuracy

We should note that this project led to an interesting finding. As mentioned
above, we should have a second-order of accuracy for the spatial step, and a
first-order for the time step. But when we set one step size to be constant and
decrease the other, the numerics do not quite work out this way.

To determine the order of accuracy, we chose a standard value for the pa-
rameter not being varied. This value ended up being 320, as it allowed plenty of
steps for the time-stepping portion to converge and also a fine enough grid for
the spatial step to determine the exact price to the necessary degree. Beginning
with 10 steps, each iteration doubled the number of steps until the final num-
ber of 1280 was reached. To calculate the error in the system, each iteration
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compared the calculated value for nine stock prices (one equal to the exercise
price and then four on each side, above and below, at $2 increments) to the
calculated values provided by the closed form solution of the European option.
The error over these nine values was averaged, and then entered in as a data
point.

We can then use log plots and polynomial fits to determine the slope of
the line, and thus the order of accuracy of the system. For this particular
experiment, N and M varied as described above, strike price was set to $10,
r = 0.1, o = 0.4, and time to expiration was three months. We find that the
spatial is a first-order, with an exact somewhere between 1 and 1.5, and that the
temporal is significantly less, along .25 to .75. This is a rather strange discovery.
At present, we have yet to determine any reason why these convergence rates
would differ so much from their supposed values. A deeper investigation into
the algorithm could possibly produce a solution.

By achieving an accurate result with a very short runtime, we have accom-
plished our goal for this project.

5 Future Work

There are a number of ways that this project could be continued. Besides the
American put, there are many different sorts of options that could be explored.
These are often called “Exotic” options, and they introduce myriad new avenues
for research. Also, an exploration into even deeper, more precise approximations
could yield an even more exact solution.

We should also look into the issue of order of accuracy. At present, we have
yet to determine why the calculated values are different than the theoretical
ones.

These are all reasonable procedures that could be undertaken in the future.
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