Bowling Modeling

A quest for excellence...

Craig Weidert April 16, 2007 Scientific Computing – Prof. Yong

The Game

- Bowling has a rich history
- Essentially, two chances to knock down the 10 pins arranged on the lane
- Rules solidified in the early 20th Century
- ~100 million players today

The Challenge

- The Lane
 - Standard dimensions: 60 feet by 42 inches
 - Oil Parameters
 - $\mu = .04$ for first two thirds of lane
 - $\mu = .2$ for last third of lane
- The Pins
 - Ten pins arranged in a triangle
 36 inches on a side
 - 15 in tall, 4.7 inches wide, about 3 and a half pounds

The Ball

- Made of polyester or urethane
- Radius is 4.25-4.3 inches
- 16 pound maximum
- Heavier inner core covered with outer material
- Offset center of mass
 - Less than 1 mm
 - Helps with spin

How the Pros Do It

- Splits are the worst
- Spins are more devastating
 - Throw or release the ball in such a way that spin is imparted
- Best bet: six degree pocket angle
- I should like to model bowling ball paths

Previous Work

- Current literature tends to be either geared towards bowling manufacturers or to make overly simplistic assumptions
- Hopkins and Patterson
 - Ball is a uniform sphere
 - Did not consider offset center of mass or variable friction
- Zecchini and Foutch
 - No center of mass offset
- Frohlich
 - Complete as far as I know
 - Used basic standard time step of .001 second
 - All of the equations I used are from this paper

Vectors and Forces

Differential Equations

- Mass * position" = $F_{con} + F_{g}$
- $d/dt (I\omega) = (r_{\Delta} x R_{con}) x F_{con}$
- If I is non-diagonal, LHS expands to: $d/dt (I\omega) = (I_o + I_{dev})\alpha + \omega x (I_{dev}\omega)$
 - No ω x ($I_o\omega$) term since ω , I_o are parallel
 - $\omega \times (I_{dev}\omega)$ is the "rolls funny" term
- At every step must calculate slippage: $(R_{con} \times \omega)$ Velo

Differential Equations (cont)

- Normal force varies
- Slipping

•
$$(I_o + I_{dev} + I_{\Delta} + I_{\Delta\Delta})\alpha = \tau_{fric} + \tau_{dev} + \tau_{\Delta} + \tau_{\Delta\Delta}$$

Rolling

•
$$(I_o + I_{dev} + I_{Roll} + I_{\Delta})\alpha = \tau_{dev} + \tau_{\Delta} + \tau_{\Delta\Delta}$$

Modeling Details

- Find y_o , theta $_o$, ω_o , v_o such that pocket angle, impact point were ideal
- 12 dimensional ordinary differential equation
- Used ode45
- Error: square of the difference in ideal, real angles plus square difference in y error
- Gutter avoidance

Results

- Possible to achieve desired impact point, pocket angle from multiple starting positions
 - Corresponds to thorough experimental work I have done on this project

• For all paths, a initial velocity of around 8 m/s and an ω_o of about 30 rad/s was sufficient

Difficulties / Future Work

- Moment of inertia tensor
 - Since ball is not symmetric, the moment of inertia must be a 3 by 3 matrix
 - Involves
 - Not sure whether this should be in lane frame
 - Breaking the effects of COM offset?
 - Will work on this in the next week
- Differing oil patterns on lane

Acknowledgements

- Cliff Frohlich
- Prof Yong
- Junbo Park