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The HIV Epidemic:
What kind of vaccine are we looking for?

1 Problem Background

33.2 million people are living with HIV and AIDS worldwide [4]. Human Immunodeficiency Virus (HIV) is a
virus that attacks the immune system and renders it weak to infection. HIV can progress to Acquired Immune
Deficiency Syndrom (AIDS) once the number of T cells in the immune system have been significantly reduced
[2]. People living with HIV are prone to infections and illnesses including pneumonia, Kaposi’s sarcoma skin
cancer, and yeast infections. Although treatments are available to prolong life for HIV infected people, such
anti-retroviral therapies are extremely expensive and patients can acquire drug resistance if the medication is
not taken everyday [2]. HIV is transmitted through unprotected sex, needle exchange, the birthing process,
and breast feeding. In 2007, 2.1 million people died from HIV/AIDS related complications, while 2.5 million
people were newly infected with HIV worldwide [4]. The extent to which the disease has spread and the
devastation it leaves behind emphasizes the need for useful and effective preventative measures against the
spread of the disease.

There are many prevention strategies used to minimize the spread of HIV and AIDS but none have
been successful at eradicating the disease. Since the disease is primarily transmitted sexually, the effective
prevention strategies currently in use to curb the spread of HIV are abstinence and condoms [2]. Even with
these prevention methods in use, HIV is still spreading rapidly, especially in developing countries. Scientists
and researchers therefore need to look towards more potent prevention strategies like vaccines.

A significant portion of HIV/AIDS research funding is being spent on vaccine research. Thirty clinical
trials have been initiated on 30 vaccines since the early 1990s. None of these vaccines have graduated past
the human testing (stage III), as their efficacy has been hard to prove [2]. Additionally it is extremely
difficult to produce a vaccine that is able to adapt to the varying nature of the disease itself which mutates
up to one million times each day. Drug resistance is common, and it is currently believed that any vaccine
that is produced will be imperfect, and would wane in efficacy over time.

In order to predict what effect a vaccine will have on the current epidemic, we produce a mathematical
model and study the dynamics of its solutions to make predictions for the number of infections and deaths
that might be prevented by a vaccine. The first section of this paper will describe the equations and
parameters of the differential equations model I chose to study. The second section outlines the ultimate
goal of the study and the study’s larger implications. This discussion is followed by a description of the
steady state equilibrium and how it was characterized computationally. Section four outlines the sensitivity
analyses I chose to employ and the results from these sensitivity analyses. The paper is concluded with a
brief description of the conclusions and ideas for future work to extend the project.

1.1 The Model

Although there are many mathematical models in the literature that investigate the dynamics of the spread
of HIV in the presence of a vaccine, I chose to focus on one such ordinary differential equation (ODE)
compartment model. This model, developed by Elbasha, Gumel et al. in 2006, describes the spread of
HIV through five distinct population groups (Figure 1). These subgroups are: unvaccinated susceptible
individuals (X), vaccinated susceptible individuals (V), unvaccinated infected individuals (Y), vaccinated
infected individuals (W), and individuals with AIDS (A). The model assumes that individuals are vaccinated
before they enter the sexually active population, and that individuals cannot be infected by HIV at birth.
The model takes into account recruitment into the sexually active population, deaths, waning immunity rate,



Table 1: A list of variable state descriptions.

Variables Description
X(t) Unvaccinated susceptible individuals
V(t) Vaccinated susceptible individuals
Y(t) Unvaccinated infected individuals
W (t) Vaccinated infected individuals
A(t) Individuals with AIDS

Table 2: A list of parameter descriptions and ranges.

Parameters Description Range U.S. Estimate
A Rate of recruitment (birth rate) (0,1] 0.01 (UNAIDS)
I3 Transmission coefficient (0,1] 0.04 (UNAIDS)
D Vaccination rate (0,1]
1—gq Degree of protection (0,1]

s Relative risk of infection (0,1] 0.5

0 Modification parameter (0,1]

] Removal rate (death rate) (0.02,0.07) 0.00826 (CIA)

o Rate of waning immunity (0,0.5]

o Progression rate to AIDS (0,1] 0.03 (UNAIDS)
N,op Population size 298,213,000 (UNAIDS)

and the imperfection of the vaccine. The model can be represented by the five following ordinary differential
equations:
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where the variable states and parameters are defined in Tables 1 and 2. Here A is the infection rate at which
susceptible individuals are infected with HIV and is represented by the following quantity:
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General ranges for each parameter are known. We can also estimate various parameters by referring to
data banks like United Nations Programme on HIV/AIDS (UNAIDS) and the World Health Organization
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Figure 1: A pictoral depiction of the five compartment ODE model describing the spread of HIV through
a population [3]. Individuals are expected to enter the sexually active population as either susceptible or
vaccinated. Both of these groups can then become infected with HIV and progress to AIDS. Parameter
descriptions can be found in Table 2.

(WHO) (U.S. estimates are presented in Table 2). The model is a non-linear set of five ODEs with a large
number of parameters which makes working with the model computationally intensive.

In the paper that examines the model described above, the authors sought to characterize the bifurcations
that took place when different incidence functions, A, were used [6]. For the purposes of this paper, I will
be considering the basic model with standard incidence (Equation 1). The stability and characterization
of the disease free equilibrium state, when no one in the population is infected with HIV (Y = W = 0)
is thoroughly described and examined by the authors. The authors also describe the basic reproductive
number of the system. The basic reproductive number (R,) describes the number of secondary infections
that would result from one infected person entering the population. The existence of endemic equilibria, in
which a proportion of the population is infected with HIV (Y, W > 0) is proven. The endemic equilibrium
depends on whether R, is greater than unity. The basic reproductive number for this model is given by:
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Elbasha and Gumel prove the following lemma in their analysis that gives conditions on the parameters
such that an endemic equilibria exists [3].

Lemma: Given
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the vaccination model has

(1) a unique endemic equilibrium if B3 < 0 < R, > 1;

(ii) a unique endemic equilibrium if By < 0 and B3 = 0 or B3 — 4B B3 = 0;
(iii) two endemic equilibria if B3 > 0, By < 0, and B3 — 4B B3 > 0;

(iv) no endemic equilibrium otherwise.



No analysis is done by the authors to determine the stability of the endemic equilibria or examine their
properties.

2 Project Goals and Description

The general goal of this paper is to determine the range of vaccination parameters that will create a disease-
free equilibrium. Ultimately, by perfoming a sensitivity analysis on the endemic equilibria, we enforce
bounds on the vaccination parameters p, g, and 6 such that a disease-free equilibrium is guaranteed. This
information can then be used to understand better the conditions under which a vaccine will have a positive
effect on the progression of HIV and AIDS in society.

The first step of the project is to verify the disease-free equilibrium results given by the authors. After
the basic reproductive number and the Jacobian are produced for a general equilibrium point, I will then
focus on finding the conditions under which the endemic equilibria exists, and the sensitivity of the endemic
equilibrium points on the parameter values. The sensitivity of the endemic equilibrium to parameters
will be determined using a Latin Hypercube Sampling method described in Section 4. Because of the
computationally intensive nature of the problem, I will be performing all calculations and simulations using
Wolfram’s Mathematica.

3 Steady State Equilibria

The majority of the initial work on this project was spent verifying the results obtained in the paper regarding
the disease-free equilibrium state:
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as well as the Jacobian matrix for the disease-free equilibrium. This Jacobian determines the dominant
eigenvalue, which verifies R, (Equation 2). The general endemic equilibrium points (for R, > 1) are defined
to be

(v + (1 =p)(g\* + p)A

S O sy ey ey
vV = A
VG +p
v+ (v + (A = p)(gA* + p))A"AD,
(A + ) (v + g + )
. pgA“AD,
TR
with A" = (ZBat s B2 451 Bs) , D, = T 90 and D, H— . We see that these endemic equilibria depend only

on parameter values ‘and can therefore be easily solved once parameter values are chosen.

4 Sensitivity Analysis

In order to determine the sensitivity of the endemic equilibria to changes in parameter values, a sensitivity
analysis was performed on the model. Sensitivity analyses are usually done on one of three levels [5]. The
first type is called screening and is usually performed by testing all possible combinations of parameters in the
space and observing the effect on the model. This process is not only time-consuming but computationally
taxing, since our model has ten parameters we would like to vary. Local sensitivity analysis is also used to
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Figure 2: A pictoral example of the Latin Hypercube sampling method [1]. A mean and standard distribution
are known for parameter A, then a distribution for it. A range of values is known for parameter B, so a
uniform distribution is chosen. After splitting each distribution into N intervals, an interval is chosen at
random and a random value from this interval is also chosen. The randomly chosen values for both parameters
are used to calculate a solution and the process is repeated until all intervals have been sampled without
replacement.

determine the sensitivity of the model on a local level and is usually done with a method called differential
analysis. The last method is global sensitivity analysis, which once perfomed will describe the model’s
sensitivity to parameter values throughout parameter and variable space. The most common type of global
sensitivity analysis is the Monte Carlo method. The method I chose to use in my analysis is described by
Blower and Dowlatabadi [1]. This method, which is called Latin Hypercube Sampling (LHS), samples the
parameter space efficiently while simulataneously allowing us to observe changes in the endemic equilibia.

4.1 Latin Hypercube Sampling

LHS is a type of stratified Monte Carlo method and allows the variation of all parameters simultaneously. It
has been proven to be more efficient than random sampling since it estimates the mean value of the function
in question more accurately [1]. The first step in LHS is to determine the probability distribution functions
that describe the state parameters in the system. If we have an estimate for a specific parameter, we can
produce a normal distribution about that estimate, or if we have no information about a specific parameter,
we can use a uniform distribution. The next step outlined by Blower and Dowlatabadi is to calculate the
number of simulations or calculations that need to be perfomed in order to sample the entire parameter
space without replacement. We are then left to divide each of the parameter ranges into N equi-probable
intervals, sample from these intervals without replacement and perform the N simulations or calculations.
Once this is done, the resulting data can be plotted and analyzed using uncertainty analysis [1]. This process
can also be visualized in Figure 2. We can use LHS to better understand what kind of vaccine parameters
we would need in order to see a disease-free equilibrium in our system. These parameter values can then be
used as guidelines for vaccine development in the context of this model.
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Figure 3: Infected population proportions for varying p values in LHS. (a) Displays the 500 interval results
for the LHS implementation. As can be seen, there seems to be no relationship between infected equilibrium
states and the proportion of the population that is vaccinated. (b) Simulation points with a ¢ value of less
than 0.5 are shown in red, while those with ¢ values greater than or equal to 0.5 are shown in blue. As can
be seen, there is no correlation between the parameter values and the proportion of the population that is
infected with HIV at any one time.

4.1.1 Distributions Chosen

Although estimates were found for a majority of the parameters examined, I chose to define uniform distribu-
tions for all parameters when performing LHS. Sampling from uniform distributions across the entire range
of possible values will give a better sense of the model’s dynamics in parameter space. Uniform distributions
also facilitate the division of distributions into N equi-probably intervals. Given more time I would like to
see how the results of LHS differ when specific distributions are defined for parameters with known means
and standard deviations. Uniform distributions were defined for all parameters within the ranges described
in Table 2.

4.1.2 Difficulties

Implementing the LHS algorithm for general models proved to be relatively straightforward but I experienced
difficulty performing the algorithm on the specific model described in Section 1. 1. The code, which was
developed for a general model, runs through the LHS algorithm and produces plots to show how the infected
proportion of the population varies with various parameter values. The plots (Figure 3) show no patterns
or trends between the parameter values and the infected population proportions. Even when interactions
between parameter values are taken into account, no clear trends were observed. The analysis of the LHS
is therefore difficult to do. Blower and Dowlatabadi recommend using a partial rank correlation analysis to
understand the results. Due to time constraints I was not able to perform this uncertainty analysis. Because
this method did not illicit clear results, I chose to perform a simpler sensitivity analysis.

4.2 Screening

In order to get a clear picture about how vaccine parameters were affecting the endemic equilibria I chose to
perform a screening analysis. This analysis was performed by varying one parameter and keeping all other
parameters constant. This procedure was performed while varying p,q, v, and 6 individually. Four values
(one low, two intermediate, one high) were chosen for each parameter. The dynamics of the population with
the chosen parameters were then observed. After running a few simulations (Figure 4) I chose to focus on
a population with initial conditions defined by X (0) = 25, V(0) = 25, Y (0) = 25, and W (0) = 25. Initial
conditions that resembled current U.S. population proportions produced uninteresting endemic equilibria
and will therefore not be analyzed.
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Figure 4: Both plots above show the dynamics of a 100 person population over 400 years with the following
parameter values: A = 1, p = 0.02, ¢ = 0.5, p = 0.95, § = 04, s = 0.45, 0 = 0.04,8 = 0.45, and
~ = 0.1. The blue curve corresponds to X(t), purple to V(t), yellow to Y(t), and green to W(t). (a) Initial
conditions are used that represent the HIV prevalence in the current U.S. population: X (0) = 99.4, V(0) = 0,
Y (0) = 0.6, and W(0) = 0. The R, value for these parameter choices and initial conditions is 1.09195. (b)
Initial conditions are used that have even proportions of people in each subgroup: X(0) = 25, V(0) = 25,
Y (0) = 25, and W(0) = 25. The R, value for these parameter choices and initial conditions is 6.75781. Since
more interesting results can be seen in endemic equilibria states for the evenly split population, the rest of
the analyses will focus on these initial conditions.

4.2.1 Results

The plots in Figure 5 show how the proportion of the population of interest changes with varying parameter
values. It should be kept in mind that this analysis is specific to the initial conditions chosen, and other
initial conditions may produce different sensitivities. The vaccinated susceptible population, which would
ideally be as high as possible, is most sensitive to changes in p and v and least sensitive to changes in ¢ and
#. We can maximize the vaccinated population by having low v and ¢ and high 8 and p. This correponds to
having low waning immunity, high effectiveness, little modification in behavior and high vaccination rates.

The general non-vaccinated infected population is again most sensitive to p and v but we see that trends
tend to be reversed. High vaccination rates result in small susceptible populations while high ~ values result
in high susceptible numbers. These trends make sense, since as waning immunity increases more vaccinated
individuals enter the susceptible population. Also as vaccination rates increase more individuals are expected
to enter the population as vaccinated and not susceptible individuals.

The vaccinated infected population has a lower prevalence rate in the population then the non-vaccinated
infected population. We see that all parameters seem to have an effect on the prevalence of this group in
the population. We observe that increasing p and ¢ results in an increase in the population proportion
of vaccinated susceptible individuals. Increasing v and 6 results in the decrease in the number of infected
vaccinated individuals. Although none of these results are particularly surprising, it is interesting to note
that ¢ and 0 have a larger effect on the vaccinated infected population then on the non-vaccinated infected
population.

When we look at the total infected population we see that all parameters affect the endemic equilibria.
We notice that to get a small endemic equilibria we want small v and ¢ and large p and . We notice also
that the sensitivity to 8 and « seems to not be linear but looks exponential for both decay and increase.

5 Conclusions

The sensitivity analysis I have performed verified intuitive parameter choices that would produce low endemic
equilibria values. We see that our screening sensitivity analysis allows us to conclude that in order to minimize
the infected population we would want a vaccine to be developed with a low waning immunity rate (v < 0.5)
and a high effectiveness (¢ < 0.5). We would also like to see a large proportion of the population (p > 0.5)
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Figure 5: These plots describe how changing vaccine parameter values affects various populations of interest.
(a) Vaccinated susceptible individuals are affected most by p and 7. (b) Non-vaccinated infected individuals
are most sensitive to p and 7. (c¢) Vaccinated infected individuals are affected by changes in all parameters.
(d) The total infected population proportion seems to be affected by all parameter choices.



vaccinated and no large difference in risky behavior between vaccinated and non-vaccinated individuals
(0 > 0.5). The screening sensitivity analysis therefore allowed us to make conclusions about the neccessary
magnitudes of the vaccine parameters that produce a low endemic equilibrium. It should be emphasized
that these results are only valid for the chosen initial conditions.

Throughout this process, I learned that it is often beneficial to begin with the simplest procedure possible
and move on to more complex analyses once the dynamics of the model are better understood. Beginning
with a general screening before implementing LHS may have narrowed down my focus to a specific subset of
the parameter space. Although the general algorithm developed and implemented for LHS works on general
models, including the model considered in this paper, the analysis of the results requires more complex and
advanced methods than those I possess.

5.1 Future Work

Future attempts to finish this project should aim to better understand the results from LHS in the context
of vaccine development. Efforts should be made to analyze the results using partial rank correlation analysis.
The broad ranges found from the screening method could then be used as starting distributions for the LHS
method, and this may narrow the scope of the LHS analysis. Work should also be done to better understand
the dynamics of the model beginning with initial conditions that represent the United States population.
Ultimately I would like to better understand how the introduction of a vaccine in the United States would
affect the epidemic and the future of HIV in this country.
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