Global vs. local optimization of system setup using a partial system simulator

Math 164: Thomas W. Barr

Make car go fast.

Math 164: Thomas W. Barr

Formula One

- 605 kg
- 4g turn
- \$500 mil/yr

Engine

force(rpm) = k torque(rpm)

Transmission

Gear	Ratio
	0.001
2	0.002
3	0.003
4	0.004
5	0.005
6	0.006
7	0.007

$$rpm(v) = v / ratio[n]$$

Acceleration equation

force(rpm) = k * torque(rpm)

Acceleration equation

force(v) = k' * torque(v / ratio[n])

Acceleration equation

force(v) = (k / ratio[n]) * torque(v / ratio[n])

Overall DE

```
x'' = ((k / ratio(x')) * torque(x' / ratio(x')) - d(x')) / m
```

Simplifying assumptions

- Shifts take zero time
 - Calculate gear on every time step
- Drivers are perfect on straights
 - Ideal brake point taken

Datasets

- Synthesize
 - Torque curve
 - Drag curve
 - Braking curve
- Interpolate
 - Spline, linear between points

Acceleration run

Acceleration run

Global optimization

Turning circle

Global optimization

Partially global optimization

Results

Results

Improvement: 0.240

Fuel Optimization

Optimization Target	Time
Light	56.949
Heavy	56.918
Combined	56.916

Conclusions

- Whole track optimization worth 0.240
- Fuel load optimization worth 0.03 l
- Optimal setup independent of shift point
- Coupled systems demand coupled optimization