David Coats
Scientific Computing
Final Report

May 2" 2008

Generating and Eroding Fractal Terrain for Sim@ity

1 Introduction:
Computer games need landscapes. Across genrempliter games, the

landscape in which game play occurs is an intgeaglof the game experience. The role
of the landscape can vary from first person shadike Halo where levels are designed
specifically to provide a challenging combat ardnaimulation games likBmCity

where a realistic landscape is the starting pdith® game. | investigate the generation
of landscapes for this simulation type of game.

Figure 1. A quiet farming town situated on a bay in SimCity4. Who knows what
fantastic possibilities await this hamlet.

In these simulation games bigger is better foldhescape. The larger the
environment one can build on, the more satisfyireggame experience. But these large
landscapes are tiresome to construct by hand usiggme tools and worse, as shown in
Figure 2 these handcrafted landscapes retain clistinnnatural artifacts.

Figure 2: Landscape created using in-game mountain, mesa, canyon, cliff, flatten
and fault tools. Visible isthe area of effect indicator for alandscape editing tool. The
landscape looks artificial.

To remedy these time and quality drawbacks, aonaatic routine that will create
qualitatively realistic landscapes is desired. W/iactals had been noticed near the
beginning of the 2D century, the fractal nature of landscapes wasrisged by Benoit
Mandelbrot when he viewed a ridgeline silhouettgdinset (Musgrave 2004). Since the
inclusion of stochastic processes to remove thiegeself-similarity characteristic of
fractals computer terrain generation has been datexnby fractal methods, especially
discrete fractal methods. While these methods ca@kly generate startlingly realistic
landscapes, discrete fractals usually exhibit wma#ly exaggerated roughness as shown
in Figure 3.

Figure 3: A fractal silhouette. Blessed State, 1988 by K enton M usgrave.

The missing element in fractal terrain is the sthimg process of erosion by
water. Fractals can be generated by any numbeeahs) and the use of continuous basis
functions has allowed this smoothing to be simulatethe fractal creation itself. These
continuous basis functions are usually derived framse functions. The noise functions
themselves produce noise with a particular frequeever spectrum that can be
controlled. Thdractal dimension, or roughness of the fractal, is varied betweaea
level of fractal iteration, ooctave, by increasing the frequency composition of thghbr
octave by a value called therunarity of the fractal. Consequently, the ever finer small
scale features of the fractal landscape are madiecbgasing the power contained in high
frequency components of the noise function. ThéirPleasis function is often used, and
the properties of the above terms are illustrated megard to the Perlin basis function in
Musgrave 2004.

(I want to do some generation with the Perlin §&snction)

While this continuous approach has shown succegerierating apparently
eroded landscapes (Musgrave 2004), river netwonksndering streams and fluvial
plains are features have not been adequately repeddusing fractals. These features are
produced by applying a model of hydraulic erosmiiie previously generated fractal
landscape. These models replicate the effectamditbby using ‘raindrops’ that begin
somewhere on the landscape then travel downhilevéroding and/or depositing
volume in the positions they pass through.

The final step of landscape generation is rendefihis final step involves
coloring the landscape perhaps based on steepnelevation above sea-level,
ray-tracing or otherwise forming a perspective vigwhe landscape, and finally adding
finishing touches like atmospheric haze. For thggqet the rendering capabilities of

SimCity 4 were used. The three step process ofrggoe, erosion, and rendering is
shown in Figure 4.

Figure 4: Landscape creation process. The top image isthe fractal generated
terrain. The middleimageistheterrain after erosion. The bottom image isthe fully
render ed landscape.

2. Methods:

MATLAB was used as the coding environment for fahterrain generation and
erosion. The eroded landscape was scaled to doeeamnge of values 0 to 255, then each
values was rounded to the nearest integer. Witldldltee cover the range of unsigned 8-bit
integers, the data could be exported to a grayedmtthap. Within SimCity 4, at the
“region” screen pressing CTRL-SHFT-ALT-R will bringp a browser that allows the
gray-scale bitmap to be loaded.

21 Fractal Generation

(Two?) fractal generation schemes were used:idtraahd-square algorithm (and
the considerably more complex Perlin noise basistian?). The diamond-square
algorithm operates according to Figure 5 and wasl tise following parameters.

masafasas
HH FF A

L 3
a b C d e

Figure5: Thediamond square algorithm. Frame a showstheinitial seeding. Frames
b and c show oneiteration, and frames d and e show a second iteration of the
algorithm.

Random number distribution — Uniform probability over the unit interval (-0t&é 0.5).
Sochastic parameter — 0.2.

The diamond-square algorithm creates square merveich have sizes of 2 1,
wherei is the number of iterations desired. The algoritiegins by seeding the
outermost corners of an array with random valuesvdrfrom the chosen random number
distribution. In the first iteration, the averagelwe neighboring corner values is
computed, then to this average is added a valwendiram the random number
distribution which has been scaled by the prodtiti@ average and the stochastic
parameter. The midpoints of the square are thetesiyfilled using neighboring values.
This creates four new squares, and the processgutsavith the second iteration. This
generation scheme is Gfnwhere n is the size of landscape generatedmsrsim Figure
6.

Figure 6: Log-L og plot of diamond-squar e algorithm runtime for various landscape
sizes.

(Perlin basis function discussion?)

2.2 Erosion Methods
(Two?)ad hoc hydraulic erosion methods were tried and theref&atures are
best described functionally:

One-to-one Volume Transport
Raindrop generation — Uniform probability for each vertex over wholaface.

Raindrop Travel — From the vertex of generation, the raindrop nsdeewhichever of its
eight nearest neighboring vertices has the loweigiht value.

Sediment Pick-up —At each position visited a 0.2 probability exigtat the raindrop will
collect sediment. The amount of sediment collebtethe raindrop is determined by
choosing a value with uniform probability from theit interval (0,1), then multiplying

the height of the current position by 0.2 times tflandom value. This means a maximum
of 1/5" the height of the current position can be eroded taindrop. The height of the
current position is decreased by the calculatedevahd the volume corresponding to this
decrease in height is transported away by the ramd

Sediment Deposition — The raindrop travels downhill by moving to tlegvkest of its eight
grid neighbors. When no lower neighbor is foundtheredge of the map has been
reached, then the height of the current positiadjssted to according to conservation of
volume.

This method is roughly O(n), where n is the nunddeaindrops.

Continuous, Gradient Dependent Erosion

Instead of using raindrops, this approach useduanof water that moves over the
landscape between vertices and over the coursay time steps (based on Musgrave
1989).

Rainfall generation — Uniform amount of water is allowed to fall eweolver the
landscape (and linearly proportional to altitudedry 160 timesteps. This is represented
by increase the volume of water present at eadiexeat time step, w;’, by an amount
Is.

Rainfall Travel and Sediment Pick-up — At each time step for each vertex, the amount of
water passedyw, to each neighboring vertex having altitudes,", starting with the
lowest of the eight neighboring vertices, is defias:

Aw = min(w), (W) +aY) - (W +a)).

If Aw is less than or equal to zero, an amount of sawtime;’, is deposited at the vertex
for the next time step. The altitude of the vedex the sediment carried in the water
covering the vertex are adjusted for the next the@ according to:

A =8 + K
S = 0= Koy

If Aw is greater than zero, the water volume at vertisxdecreased and the water volume
at the neighbor vertexis increased byw. The water carries with it an amount of
sediments that is subtracted from the sediment availabteavertex. If 8 > ¢, then the
sediment is adjusted according to:

c, = K.Aw
S =8 —C.
S =S *C

But if over the course of updating the neighbonmedices, § < ¢, extra sediment is
eroded from the height of the current vertex acogytb:

S =0
Sa =% *s +K(c - 5).
ay =a —Ky(c,—5)
If sediment remains in the current vertex aftersbdiment demands of water flows to its

neighbors are met, then the altitude of the vedencreased as some of the sediment is
deposited:

A =8 + K
S =8 ~Kq§

The constants K Ky, and K are respectively the sediment capacity, sedimepbsition
and soil softness constants.

3. Geometry

The geometry of the surface considered deservesaspdtention. The surface of the
landscape is approximated by many planar sectiacis mrmed between exactly three
vertices as shown in Figure 7.

Figure 7: Thelandscape surface is approximated using many planar sectionsthat
make up formed between triplets of vertices. (needsto be pyramidized)

To calculate the volume under this surface we c¢aidelthe surface into eight volumes
each with a triangular top plane. The volume bdneath of these surfaces can be seen
as the triangular base area times the averagethditire top plane. Because the top
plane is triangular its average height is simpby dlrerage of the three vertex heights.
Thus if the bottom is a right isosceles triangléwgide lengtid, the volume beneath one
of the triangular patches is:

d2
Vpalch ZF(hl +h2 +hS)

The volume of the pyramid-like shape in terms @f tlertex heights is then:
d2 1 1
V=—7ol8h+2> > h,|
6 i=—1i#0 j=—1,j%0

Of interest to relating heights to volumes of dejias and erosion is the volume
generated by a differencelig from initial and final values:

8d?
6

AV =V(h)-V(h) = (h —hy).

This is a fortuitous conclusion, since it meang tltdume can be conserved simply
conserving height. Note that this is a special prgypof this type of surface alone.

References:

Sutherland, Ben. Particle Based Enhancement ohinerata ACM S GGRAPH 2006
Research Posters. Article No. 96, 2006.

Musgrave, Kenton F. The Synthesis and Renderirify@ded Fractal TerrainS€omputer
Graphics. vol. 23, no. 3, pgs. 41-50, July 1989.

Musgrave, Kenton F. Fractal Terrains and Fractah&is ACM SGGRAPH 2004
Course Notes. Article No. 32, 2004.

Appendix A: Source Code

function [land3 land2] = createErodedLand(m,n)
%By David Coats, Apr 2008, david.coats@gmail.com
%

%This function is meant to create an eroded land. | t takes inthe m x n
%size of the land you want to generate, using these parameters to call
%createFractalLand for a square that would be large enough to cut out

the

%m x n portion desired.
%
%Then the land is eroded.

tic

%Parameters
deposProb = 0;
erodeProb = 0.2;
erodeVal = 0.2;
raindrops = 500000;
frameRate = 1000;

%Create a fractal land

land = createFractalLand(ceil(log2(max(m, n))));
%Cut the land down to the size we want

land = land(1:m,1:n);

display(strcat(['Fractal land generated in ',num2st
seconds."));

%Get the max height of this land for viewing purpos
height = max(land(:));

%Create a copy of the initial land to see changes
land2 = land;
%land2 = land;

%For movie creation
count=1;
hold off;

%Now we erode via isochoric raindrops.
for i = 1:raindrops

%choose a random land tile

M = ceil(m*rand);

N = ceil(n*rand);

%By a strange coincidence, the change in volume

%change in height. Who knew? What this does is
the

%raindrop picks up a portion of volume. Then, t
deposited

%at the lowest point.

%Now we need to find a place from which to take
X =M;
y=N;
stopper = 1,
stopper2 = 1;
while stopper;
forj=-1:1
fork =-1:1
if 0 <j+M && j+M <=m && 0 < k+N &
if land(j+M,k+N) < land(M,N)

X:j+|\/|;
y = k+N;
end

end
end

r(toc),’

es

is equal to 4/3 the
move downhill until

he volume is

volume.

& k+N <=n

end

ifx==M&&N ==
stopper = 0;
stopper2 = 0;
else
M = x;
N=y;

if rand < erodeProb
dHeight = abs(land(M,N)* erodeVal *
land(M,N) = land(M,N) - dHeight;
stopper = 0;
end
end
end

%Now we just need to find the proper place to d
X=M;
y=N;
while stopper2;
forj=-1:1
fork =-1:1
if 0 <j+M && j+M <=m && 0 < k+N &
if land(j+M,k+N) < land(M,N)
X = j+M;
y = k+N;
end
end
end
end

%Even if a lower value is found, perhaps we
be
%deposited here. This allows volume to take
%bottom of the valleys.
if deposProb > rand
X =M;
y=N;
end

ifx==M && N ==
land(M,N) = land(M,N) + dHeight;
stopper2 = 0;

else
M = x;
N=y;

end

end

% if mod(i,frameRate) ==

% surf(land);
% set(gca, CameraPosition’,[m,0,height]);
% %F(count) = getframe;

% count = count + 1;

rand);

eposit the height.

& k+N <=n

want the volume to

many steps to the

% display(strcat(['The count is: ',num2str(count)," out of
",num2str(raindrops/frameRate)]));

% end

end

display(strcat(['Erosion complete at ‘,num2str(toc) ,' seconds."));

%Temporary Plotting code
land(1,1) = min(land2(:));
surf(land);

figure

surf(land2);

land3 = land,;

%Post-processing of land
Min = abs(min(land(®)));
land = land + Min;

Max = max(land(:));
Max = 255/Max;
land = land*Max;
land = round(land);

%Now save as a grayscale

land = uint8(land);

imwrite(land,'eroded.bmp");

display(strcat(['Total time: ',num2str(toc),' secon ds.));

%movie2avi(F,'erosion’);
end

%%%%%%% % %% %% %% %% %% %% %% % %% %% %% %% %% %% %% % %0 % %% %0 % %% %0 % %%
function land = createFractalLand(power)

%By David Coats, Mar 2008, david.coats@gmail.com

%

%This function is meant to implement the Diamond-Sq uare algorithm for

%fractal land generation.

if power <1

error('Power input argument must be an integer that is one or
greater!’);
end

Isize = 2"power+1;
land = zeros(Isize);

%Parameters
decreaseScaleTot = 0.2;
height = 1,

%Setup the land corners.
land(1,1) = height*(rand-0.5);
land(end,1) = height*(rand-0.5);
land(1,end) = height*(rand-0.5);
land(end,end) = height*(rand-0.5);

%Use a queue to hold which points should be visited

step = (Isize - 1)/2;

Q = zeros(4,Isize™2 - 4);

Q(:,1) =[1 + step; 1+ step; 1; step]; Yoenqueue the
1 point means that lateral points are next.

count =1,

gCount = 2;

while 1
%Breaking condition, should break before step g
three
%due to corners.
if count == Isize”2 -3
break;
end

%Decrease scale mellows with time.
decreaseScale = decreaseScaleTot*step;

%Dequeue our current tile.
current = Q(:,count);
step = current(4);

%Here gets the last round of points

if step==0.5
step = 1,
end

%Now many conditionals for enqueuing our points

if current(3) == 1 %Then enqueue lateral points
if current(1) - step >0
if land(current(1) - step, current(2))
temp = [current(1) - step; current(
land(current(1) - step, current(2))
Q(:,gCount) = temp;
qCount = qCount + 1;
end
end

if current(1) + step <= Isize
if land(current(1) + step, current(2))
temp = [current(1) + step; current(
land(current(1) + step, current(2))
Q(:,gCount) = temp;
gCount = gCount + 1;
end
end

if current(2) - step >0
if land(current(1), current(2) - step)
temp = [current(1); current(2) - st
land(current(1), current(2) - step)
Q(:,gCount) = temp;
qCount = gCount + 1;
end
end

if current(2) + step <= Isize

middle point. Type

ets to 0.25, minus

2); 2; step/2];

2); 2; step/2];

ep; 2; step/2];
=1;

if land(current(1), current(2) + step)
temp = [current(1); current(2) + st
land(current(1), current(2) + step)
Q(:,gCount) = temp;
qCount = qCount + 1;
end
end

%Now create the current point's elevation

sum = 0;

n=0;

if current(1) - step > 0 && current(2) - st
sum = sum + land(current(1) - step, cur
n=n+1;

end

if current(1) + step <= Isize && current(2)
sum = sum + land(current(1) + step, cur
n=n+1;

end

if current(2) - step > 0 && current(1) + st
sum = sum + land(current(1) + step, cur
n=n+1;

end

if current(2) + step <= Isize && current(1)
sum = sum + land(current(1) - step, cur

n=n+1;
end
avg = sum/n;
land(current(1),current(2)) = avg + decreas

0.5);
else %Else enqueue diagonal points
if current(1) - step > 0 && current(2) - st
if land(current(1) - step, current(2) -
temp = [current(1) - step; current(
land(current(1) - step, current(2)
Q(:,gCount) = temp;
qCount = qCount + 1;
end
end

if current(1) + step <= Isize && current(2)
if land(current(1) + step, current(2) +
temp = [current(1) + step; current(
land(current(1) + step, current(2)
Q(:,gCount) = temp;
qCount = qCount + 1;
end
end

if current(2) - step > 0 && current(1) + st
if land(current(1) + step, current(2) -
temp = [current(1) + step; current(
land(current(1) + step, current(2)

ep; 2; step/2];

ep>0
rent(2) - step);

+ step < Isize
rent(2) + step);

ep <=lsize
rent(2) - step);

-step>0
rent(2) + step);

eScale*avg*(rand-

ep>0

step) ==

2) - step; 1, step];
- step) = 1;

+ step < Isize
step) ==

2) + step; 1; step];
+ step) = 1;

ep <= Isize

step) ==

2) - step; 1; step];
- step) = 1;

Q(:,gCount) = temp;
qCount = qCount + 1;
end
end

if current(2) + step <= Isize && current(1)
if land(current(1) - step, current(2) +
temp = [current(1) - step; current(
land(current(1) - step, current(2)
Q(:,gCount) = temp;
qCount = qCount + 1;
end
end

%Now create the current point's elevation
sum = 0;
n=0;
if current(1) - 2*current(4) > 0
sum = sum + land(current(1) - 2*current
n=n+1;
end

if current(1) + 2*current(4) <= Isize
sum = sum + land(current(1) + 2*current
n=n+1;

end

if current(2) - 2*current(4) > 0
sum = sum + land(current(1), current(2)
n=n+1;

end

if current(2) + 2*current(4) <= Isize
sum = sum + land(current(1), current(2)

n=n+1;
end
avg = sum/n;
land(current(1),current(2)) = avg + decreas
0.5);
end

count = count + 1;
end
%surface(land);
end

-step>0

step) ==

2) + step; 1; step];
+ step) = 1;

(4), current(2));

(4), current(2));

- 2*current(4));

+ 2*current(4));

eScale*avg*(rand-

