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Generating and Eroding Fractal Terrain for SimCity 4 
 
 

1. Introduction: 
 Computer games need landscapes. Across genres of computer games, the 
landscape in which game play occurs is an integral part of the game experience. The role 
of the landscape can vary from first person shooters like Halo where levels are designed 
specifically to provide a challenging combat arena, to simulation games like SimCity 
where a realistic landscape is the starting point of the game. I investigate the generation 
of landscapes for this simulation type of game. 
 

 
 
Figure 1: A quiet farming town situated on a bay in SimCity4. Who knows what 
fantastic possibilities await this hamlet. 

 
 In these simulation games bigger is better for the landscape. The larger the 
environment one can build on, the more satisfying the game experience. But these large 
landscapes are tiresome to construct by hand using in game tools and worse, as shown in 
Figure 2 these handcrafted landscapes retain distinctly unnatural artifacts. 
 



 
 
Figure 2: Landscape created using in-game mountain, mesa, canyon, cliff, flatten 
and fault tools. Visible is the area of effect indicator for a landscape editing tool. The 
landscape looks artificial. 

 
 To remedy these time and quality drawbacks, an automatic routine that will create 
qualitatively realistic landscapes is desired. While fractals had been noticed near the 
beginning of the 20th century, the fractal nature of landscapes was first noted by Benoit 
Mandelbrot when he viewed a ridgeline silhouetted by sunset (Musgrave 2004). Since the 
inclusion of stochastic processes to remove the perfect self-similarity characteristic of 
fractals computer terrain generation has been dominated by fractal methods, especially 
discrete fractal methods. While these methods can quickly generate startlingly realistic 
landscapes, discrete fractals usually exhibit unnaturally exaggerated roughness as shown 
in Figure 3. 
 



 
Figure 3: A fractal silhouette. Blessed State, 1988 by Kenton Musgrave. 

 
 The missing element in fractal terrain is the smoothing process of erosion by 
water. Fractals can be generated by any number of means, and the use of continuous basis 
functions has allowed this smoothing to be simulated in the fractal creation itself. These 
continuous basis functions are usually derived from noise functions. The noise functions 
themselves produce noise with a particular frequency power spectrum that can be 
controlled. The fractal dimension, or roughness of the fractal, is varied between each 
level of fractal iteration, or octave, by increasing the frequency composition of the higher 
octave by a value called the lacunarity of the fractal. Consequently, the ever finer small 
scale features of the fractal landscape are made by increasing the power contained in high 
frequency components of the noise function. The Perlin basis function is often used, and 
the properties of the above terms are illustrated with regard to the Perlin basis function in 
Musgrave 2004. 
 
 (I want to do some generation with the Perlin basis function) 
 
 While this continuous approach has shown success in generating apparently 
eroded landscapes (Musgrave 2004), river networks, meandering streams and fluvial 
plains are features have not been adequately reproduced using fractals. These features are 
produced by applying a model of hydraulic erosion to the previously generated fractal 
landscape. These models replicate the effects of rainfall by using ‘raindrops’ that begin 
somewhere on the landscape then travel downhill while eroding and/or depositing 
volume in the positions they pass through. 
 
 The final step of landscape generation is rendering. This final step involves 
coloring the landscape perhaps based on steepness or elevation above sea-level, 
ray-tracing or otherwise forming a perspective view of the landscape, and finally adding 
finishing touches like atmospheric haze. For this project the rendering capabilities of 



SimCity 4 were used. The three step process of generation, erosion, and rendering is 
shown in Figure 4. 
 

 

 

 
 
Figure 4: Landscape creation process. The top image is the fractal generated 
terrain. The middle image is the terrain after erosion. The bottom image is the fully 
rendered landscape. 

 
 
2.  Methods: 
 MATLAB was used as the coding environment for fractal terrain generation and 
erosion. The eroded landscape was scaled to cover the range of values 0 to 255, then each 
values was rounded to the nearest integer. With the data cover the range of unsigned 8-bit 
integers, the data could be exported to a gray-scale bitmap. Within SimCity 4, at the 
“region” screen pressing CTRL-SHFT-ALT-R will bring up a browser that allows the 
gray-scale bitmap to be loaded. 
 
 
2.1 Fractal Generation 



 (Two?) fractal generation schemes were used: the diamond-square algorithm (and 
the considerably more complex Perlin noise basis function?). The diamond-square 
algorithm operates according to Figure 5 and was used the following parameters. 
 

 
Figure 5: The diamond square algorithm. Frame a shows the initial seeding. Frames 
b and c show one iteration, and frames d and e show a second iteration of the 
algorithm. 

 
Random number distribution – Uniform probability over the unit interval (-0.5 to 0.5). 
 
Stochastic parameter – 0.2. 
 
 The diamond-square algorithm creates square terrains which have sizes of 2i + 1, 
where i is the number of iterations desired. The algorithm begins by seeding the 
outermost corners of an array with random values drawn from the chosen random number 
distribution. In the first iteration, the average of the neighboring corner values is 
computed, then to this average is added a value drawn from the random number 
distribution which has been scaled by the product of the average and the stochastic 
parameter. The midpoints of the square are then similarly filled using neighboring values. 
This creates four new squares, and the process proceeds with the second iteration. This 
generation scheme is O(n2), where n is the size of landscape generated as shown in Figure 
6. 
 
 

Figure 6: Log-Log plot of diamond-square algorithm runtime for various landscape 
sizes. 

 
 (Perlin basis function discussion?) 
 
 
2.2 Erosion Methods 
 (Two?) ad hoc hydraulic erosion methods were tried and there key features are 
best described functionally: 
 
One-to-one Volume Transport 
Raindrop generation – Uniform probability for each vertex over whole surface. 
 
Raindrop Travel – From the vertex of generation, the raindrop moves to whichever of its 
eight nearest neighboring vertices has the lowest height value. 
 



Sediment Pick-up –At each position visited a 0.2 probability exists that the raindrop will 
collect sediment. The amount of sediment collected by the raindrop is determined by 
choosing a value with uniform probability from the unit interval (0,1), then multiplying 
the height of the current position by 0.2 times this random value. This means a maximum 
of 1/5th the height of the current position can be eroded by a raindrop. The height of the 
current position is decreased by the calculated value and the volume corresponding to this 
decrease in height is transported away by the raindrop.  
 
Sediment Deposition – The raindrop travels downhill by moving to the lowest of its eight 
grid neighbors. When no lower neighbor is found, or the edge of the map has been 
reached, then the height of the current position is adjusted to according to conservation of 
volume. 
 
This method is roughly O(n), where n is the number of raindrops. 
 
 
Continuous, Gradient Dependent Erosion 
Instead of using raindrops, this approach uses a volume of water that moves over the 
landscape between vertices and over the course of many time steps (based on Musgrave 
1989). 
 
Rainfall generation – Uniform amount of water is allowed to fall evenly over the 
landscape (and linearly proportional to altitude) every 160 timesteps. This is represented 
by increase the volume of water present at each vertex v at time step t, wt

v, by an amount 
rf. 
 
Rainfall Travel and Sediment Pick-up – At each time step for each vertex, the amount of 
water passed, ∆w, to each neighboring vertex u, having altitude at

u, starting with the 
lowest of the eight neighboring vertices, is defined as: 
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If ∆w is less than or equal to zero, an amount of sediment, st+1

v, is deposited at the vertex 
for the next time step. The altitude of the vertex and the sediment carried in the water 
covering the vertex are adjusted for the next time step according to: 
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If ∆w is greater than zero, the water volume at vertex v is decreased and the water volume 
at the neighbor vertex u is increased by ∆w. The water carries with it an amount of 
sediment cs that is subtracted from the sediment available at the vertex. If st

v > cs, then the 
sediment is adjusted according to: 
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But if over the course of updating the neighboring vertices, st

v < cs, extra sediment is 
eroded from the height of the current vertex according to: 
 

)(

)(

0

1

1

1

v
tss

v
t

v
t

v
tss

v
t

u
t

u
t

v
t

scKaa

scKsss

s

−−=

−++=

=

+

+

+

. 

 
If sediment remains in the current vertex after the sediment demands of water flows to its 
neighbors are met, then the altitude of the vertex is increased as some of the sediment is 
deposited: 
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The constants Kc, Kd, and Ks are respectively the sediment capacity, sediment deposition 
and soil softness constants. 
 
 
3.  Geometry 
The geometry of the surface considered deserves special attention. The surface of the 
landscape is approximated by many planar sections each formed between exactly three 
vertices as shown in Figure 7. 
 

 
Figure 7: The landscape surface is approximated using many planar sections that 
make up formed between triplets of vertices. (needs to be pyramidized) 



 
To calculate the volume under this surface we can divide the surface into eight volumes 
each with a triangular top plane. The volume beneath each of these surfaces can be seen 
as the triangular base area times the average height of the top plane. Because the top 
plane is triangular its average height is simply the average of the three vertex heights. 
Thus if the bottom is a right isosceles triangle with side length d, the volume beneath one 
of the triangular patches is: 
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The volume of the pyramid-like shape in terms of the vertex heights is then: 
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Of interest to relating heights to volumes of deposition and erosion is the volume 
generated by a difference in h0 from initial and final values: 
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This is a fortuitous conclusion, since it means that volume can be conserved simply 
conserving height. Note that this is a special property of this type of surface alone. 
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Appendix A: Source Code 
function [land3 land2] = createErodedLand(m,n) 
%By David Coats, Apr 2008, david.coats@gmail.com 
% 
%This function is meant to create an eroded land. I t takes in the m x n 
%size of the land you want to generate, using these  parameters to call 
%createFractalLand for a square that would be large  enough to cut out 
the   



%m x n portion desired. 
% 
%Then the land is eroded. 
 
tic 
%Parameters 
deposProb = 0; 
erodeProb = 0.2; 
erodeVal = 0.2; 
raindrops = 500000; 
frameRate = 1000; 
 
%Create a fractal land 
land = createFractalLand(ceil(log2(max(m, n)))); 
%Cut the land down to the size we want 
land = land(1:m,1:n); 
display(strcat(['Fractal land generated in ',num2st r(toc),' 
seconds.'])); 
%Get the max height of this land for viewing purpos es 
height = max(land(:)); 
 
%Create a copy of the initial land to see changes 
land2 = land; 
%land2 = land; 
 
%For movie creation 
count = 1; 
hold off; 
 
%Now we erode via isochoric raindrops. 
for i = 1:raindrops 
    %choose a random land tile 
    M = ceil(m*rand); 
    N = ceil(n*rand); 
     
    %By a strange coincidence, the change in volume  is equal to 4/3 the 
    %change in height. Who knew? What this does is move downhill until 
the 
    %raindrop picks up a portion of volume. Then, t he volume is 
deposited 
    %at the lowest point. 
     
    %Now we need to find a place from which to take  volume. 
    x = M; 
    y = N; 
    stopper = 1; 
    stopper2 = 1; 
    while stopper; 
        for j = -1:1 
            for k = -1:1 
                if 0 < j+M && j+M <= m && 0 < k+N & & k+N <= n 
                    if land(j+M,k+N) < land(M,N) 
                        x = j+M; 
                        y = k+N; 
                    end 
                end 
            end 



        end 
         
        if x == M && N == y 
            stopper = 0; 
            stopper2 = 0; 
        else 
            M = x; 
            N = y; 
            if rand < erodeProb 
                dHeight = abs(land(M,N)* erodeVal *  rand); 
                land(M,N) = land(M,N) - dHeight; 
                stopper = 0; 
            end                 
        end 
    end 
     
     
     
    %Now we just need to find the proper place to d eposit the height. 
    x = M; 
    y = N; 
    while stopper2; 
        for j = -1:1 
            for k = -1:1 
                if 0 < j+M && j+M <= m && 0 < k+N & & k+N <= n 
                    if land(j+M,k+N) < land(M,N) 
                        x = j+M; 
                        y = k+N; 
                    end 
                end 
            end 
        end 
         
        %Even if a lower value is found, perhaps we  want the volume to 
be 
        %deposited here. This allows volume to take  many steps to the 
        %bottom of the valleys. 
        if deposProb > rand 
            x = M; 
            y = N; 
        end 
         
        if x == M && N == y 
            land(M,N) = land(M,N) + dHeight; 
            stopper2 = 0; 
        else 
            M = x; 
            N = y; 
        end 
    end 
     
%     if mod(i,frameRate) == 0 
%         surf(land); 
%         set(gca,'CameraPosition',[m,0,height]); 
%         %F(count) = getframe; 
%         count = count + 1; 



%         display(strcat(['The count is: ',num2str( count),' out of 
',num2str(raindrops/frameRate)])); 
%     end 
end 
display(strcat(['Erosion complete at ',num2str(toc) ,' seconds.'])); 
 
%Temporary Plotting code 
land(1,1) = min(land2(:)); 
surf(land); 
figure 
surf(land2); 
land3 = land; 
 
%Post-processing of land 
Min = abs(min(land(:))); 
land = land + Min; 
 
Max = max(land(:)); 
Max = 255/Max; 
land = land*Max; 
land = round(land); 
 
%Now save as a grayscale 
land = uint8(land); 
imwrite(land,'eroded.bmp'); 
display(strcat(['Total time: ',num2str(toc),' secon ds.'])); 
 
%movie2avi(F,'erosion'); 
end 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function land = createFractalLand(power) 
%By David Coats, Mar 2008, david.coats@gmail.com 
% 
%This function is meant to implement the Diamond-Sq uare algorithm for 
%fractal land generation. 
 
if power < 1 
    error('Power input argument must be an integer that is one or 
greater!'); 
end 
 
lsize = 2^power+1; 
land = zeros(lsize); 
 
%Parameters 
decreaseScaleTot = 0.2; 
height = 1; 
 
%Setup the land corners. 
land(1,1) = height*(rand-0.5); 
land(end,1) = height*(rand-0.5); 
land(1,end) = height*(rand-0.5); 
land(end,end) = height*(rand-0.5); 
 
%Use a queue to hold which points should be visited . 



step = (lsize - 1)/2; 
Q = zeros(4,lsize^2 - 4); 
Q(:,1) = [1 + step; 1+ step; 1; step]; %enqueue the  middle point. Type 
1 point means that lateral points are next. 
count = 1; 
qCount = 2; 
 
while 1 
    %Breaking condition, should break before step g ets to 0.25, minus 
three 
    %due to corners. 
    if count == lsize^2 -3 
        break; 
    end 
     
    %Decrease scale mellows with time. 
    decreaseScale = decreaseScaleTot*step; 
     
    %Dequeue our current tile. 
    current = Q(:,count); 
    step = current(4); 
     
    %Here gets the last round of points 
    if step == 0.5 
        step = 1; 
    end 
     
    %Now many conditionals for enqueuing our points . 
    if current(3) == 1 %Then enqueue lateral points  
        if current(1) - step > 0 
            if land(current(1) - step, current(2)) == 0 
                temp = [current(1) - step; current( 2); 2; step/2]; 
                land(current(1) - step, current(2))  = 1; 
                Q(:,qCount) = temp; 
                qCount = qCount + 1; 
            end 
        end 
         
        if current(1) + step <= lsize             
            if land(current(1) + step, current(2)) == 0 
                temp = [current(1) + step; current( 2); 2; step/2]; 
                land(current(1) + step, current(2))  = 1; 
                Q(:,qCount) = temp; 
                qCount = qCount + 1; 
            end 
        end 
         
        if current(2) - step > 0 
            if land(current(1), current(2) - step) == 0 
                temp = [current(1); current(2) - st ep; 2; step/2]; 
                land(current(1), current(2) - step)  = 1; 
                Q(:,qCount) = temp; 
                qCount = qCount + 1; 
            end 
        end 
         
        if current(2) + step <= lsize 



            if land(current(1), current(2) + step) == 0 
                temp = [current(1); current(2) + st ep; 2; step/2]; 
                land(current(1), current(2) + step)  = 1; 
                Q(:,qCount) = temp; 
                qCount = qCount + 1; 
            end 
        end 
         
        %Now create the current point's elevation 
        sum = 0; 
        n = 0; 
        if current(1) - step > 0 && current(2) - st ep > 0 
            sum = sum + land(current(1) - step, cur rent(2) - step); 
            n = n + 1; 
        end 
         
        if current(1) + step <= lsize && current(2)  + step < lsize 
            sum = sum + land(current(1) + step, cur rent(2) + step); 
            n = n + 1; 
        end 
         
        if current(2) - step > 0 && current(1) + st ep <= lsize 
            sum = sum + land(current(1) + step, cur rent(2) - step); 
            n = n + 1; 
        end 
         
        if current(2) + step <= lsize && current(1)  - step > 0 
            sum = sum + land(current(1) - step, cur rent(2) + step); 
            n = n + 1; 
        end 
                 
        avg = sum/n; 
        land(current(1),current(2)) = avg + decreas eScale*avg*(rand-
0.5); 
    else %Else enqueue diagonal points 
        if current(1) - step > 0 && current(2) - st ep > 0 
            if land(current(1) - step, current(2) -  step) == 0 
                temp = [current(1) - step; current( 2) - step; 1; step]; 
                land(current(1) - step, current(2) - step) = 1; 
                Q(:,qCount) = temp; 
                qCount = qCount + 1; 
            end 
        end 
         
        if current(1) + step <= lsize && current(2)  + step < lsize 
            if land(current(1) + step, current(2) +  step) == 0 
                temp = [current(1) + step; current( 2) + step; 1; step]; 
                land(current(1) + step, current(2) + step) = 1; 
                Q(:,qCount) = temp; 
                qCount = qCount + 1; 
            end 
        end 
         
        if current(2) - step > 0 && current(1) + st ep <= lsize 
            if land(current(1) + step, current(2) -  step) == 0 
                temp = [current(1) + step; current( 2) - step; 1; step]; 
                land(current(1) + step, current(2) - step) = 1; 



                Q(:,qCount) = temp; 
                qCount = qCount + 1; 
            end 
        end 
         
        if current(2) + step <= lsize && current(1)  - step > 0 
            if land(current(1) - step, current(2) +  step) == 0 
                temp = [current(1) - step; current( 2) + step; 1; step]; 
                land(current(1) - step, current(2) + step) = 1; 
                Q(:,qCount) = temp; 
                qCount = qCount + 1; 
            end 
        end 
         
        %Now create the current point's elevation 
        sum = 0; 
        n = 0; 
        if current(1) - 2*current(4) > 0 
            sum = sum + land(current(1) - 2*current (4), current(2)); 
            n = n + 1; 
        end 
         
        if current(1) + 2*current(4) <= lsize 
            sum = sum + land(current(1) + 2*current (4), current(2)); 
            n = n + 1; 
        end 
         
        if current(2) - 2*current(4) > 0 
            sum = sum + land(current(1), current(2)  - 2*current(4)); 
            n = n + 1; 
        end 
         
        if current(2) + 2*current(4) <= lsize 
            sum = sum + land(current(1), current(2)  + 2*current(4)); 
            n = n + 1; 
        end 
         
        avg = sum/n; 
        land(current(1),current(2)) = avg + decreas eScale*avg*(rand-
0.5); 
    end 
     
    count = count + 1; 
end 
%surface(land); 
end 

 


