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1 Introduction

Sketches are a natural medium of communication used regularly in engineer-
ing, computer science, and many other fields. Whiteboards are an essential
scientific tool, and Tablet PCs are becoming more and more popular. While
sketches are excellent tools for communicating with other humans, they are
limited by the inability of computers to recognize and analyze them. Many
times sketches are used in the preliminary stages of design, such as for a
software project or a digital circuit. However, there are no validation or sim-
ulation tools that can be used on a sketch. Computerized design programs,
on the other hand, offer a multitude of tools for a designer to verify and
interact with their design. Unfortunately, these design programs often have
unwieldy and difficult interfaces for initial design and modification. Designers
often spend more time fighting with an interface than they do productively
creating. The long term goal of our research is to bridge this gap. We would
like to create a program that is capable of recognizing unrestricted hand-
drawn sketches on a Tablet PC and converting them into a format which a
computer design program can analyze and interact with.

We call this problem sketch recognition, and it turns out that it is a very
difficult problem with many sub-parts. We concentrate on the problem of
Symbol Recognition in the domain of digital circuits. What we mean by
this is that we only consider the recognition of sketches of digital circuits
— images made of AND, OR, NOT, NAND, and NOR gates connected by
wires — and we are only interested in recognizing the symbols in this domain.
That is, given an unknown symbol we want to be able to classify it as AND,
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OR, NOT, NAND, or NOR with the best possible accuracy. We call this
Gate Recognition, and note that the particular problem of Gate Recognition
does not have any solutions in the literature. There are a host of other
problems in sketch recognition, and an interested reader can consult the Free-
Sketch Recognition section of the reading list for Christine Alvarado’s Pen
Based Computing class: http://www.cs.hmc.edu/courses/2008/spring/

cs182-pbc/reading.html.

2 Congealing: Motivation

The fundamental problem of Gate Recognition is to match an unknown gate
as well as possible to one of the different classes of gates. We base our work
off of the paper [1] which proposes the idea of congealing. This is basically a
way of creating a “platonic gate” which will then be easier to match against
an unknown gate.

We derive the term “platonic gate” from Plato’s idea of forms. A form
is the quintessentially idea or archetype behind an object. For example,
according to Plato every horse in existence shares some piece or essence of
horseness that allows it to be identified as a horse. This essence stems from
each horse being a flawed version of the perfect horse archetype. When a
new horse is born it is like it is stamped out from this archetype, but the
stamping process introduces flaws that make that particular horse unique.
The horse archetype is what can be called a “platonic horse” because it is
the perfect horse, the horse that defines what it means to be a horse. What
we want to do with congealing is find a platonic gate that defines what it
means to be a particular logic gate.

In order to find a platonic gate, even conceptually, we must make some
assumptions. First we assume that a platonic gate exists. Next, we use the
idea that every real gate is created from this archetypical gate and assume
that every gate that is drawn can be created from the platonic gate by some
transform. A key assumption is that these transforms are invertible and have
some sensible distribution to them. We have a set of drawn images D and
we want to find a set of transforms T and a platonic image I such that for
every d ∈ D there is a t ∈ T such that t(d) = I, which is done by the
process of congealing. Once we find I we can use it to improve classification
by mapping an unknown image of a gate g into congealed space by some
t ∈ T and comparing t(g) to I by any one of a set of well-known methods

2



to determine if two images are similar. Essentially the process of congealing
is one of noise-reduction. There is a mathematical justification of congealing
in terms of probability in [1] for sufficiently interested readers. We highly
recommend this paper for anyone trying to duplicate our work.

3 Methods

We want the computer to search for the platonic image for each of our gates.
In order to do this, we reframe our question as an optimization problem.
First, we read in a dataset containing many sketched examples of each type
of gate. Then, for each type of gate, we convert the training gates to bitmaps.
We map a colored pixel to one and a white pixel to zero. Then we create
an average image as follows: for each pixel, we sum the value of the cor-
responding pixel in each gate in our training set, and divide this value by
the number of gates. Thus the average image represents the probability of
a given pixel being black in our training set. Our goal is to minimize the
sum of pixelwise entropy of the average image, where the sum of pixelwise
entropy is defined as

E =
∑
p

H(v(p)).

v(p) is the probability of a pixel p being black, as defined in the average
image, and H is the discrete entropy function,

H(p) = −p log2 p− (1− p) log2(1− p).

which looks like Figure 1 on the inverval [0,1]. Note that the minima of H
are at 0 and 1, and the maximum of H is at .5. Thus, in order to minimize
the entropy, we must be as certain as we can that a pixel is either white
or black. In other words, if we imagine the probability of each pixel to be
represented by a coin flip, we want to weight our coin as much as possible.
We want, for each pixel, to be as certain as possible that that pixel is going
to be black (or white). We do this by transforming our base images in a way
that will increase this certainty.

3.1 Training

In order to minimize the entropy of an average image we want to apply
transforms to the individual image in our dataset to make them each more
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Figure 1: The binary entropy function H.

like the average. Mathematically this increasing likeness is represented by a
decrease in total entropy. Visually it is shown by a increasingly sharp average
image. For our training we restrict ourselves to only affine transforms, but
other sets of transforms could easily be used.

The search algorithm that we use to minimize entropy is fairly simple.
While decreases in total entropy continue happening we iterate through each
image, and for each image we iterate through each possible transform in our
set of transforms. We try that transform on that image and if total entropy
decreases we keep that transform. After we have completed our iteration
through all of the images we save the average image in whatever state it is
for later use in classification. A little more formally in pseduocode, this is

// AvgImage before the warps are applied

AvgImage avgImg = new AvgImage(m_images);

// Stop training if improvements get small or number of iterations gets large

double entropyDelta = double.PositiveInfinity;

int numIters = 0;

while ((numIters < maxIters) && (entropyDelta > epsilon))
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{

for (int idx = 0; idx < numImgs; ++idx)

{

ImageTransform currentIT = m_images[idx];

for(int warpIdx = 0; warpIdx < numWarps; ++idx)

{

currentIT.apply(WARPS[warpIdx]);

AvgImg newAvgImg = new AvgImg(m_images);

if (newAvgImg.Entropy < avgImg.Entropy)

{

avgImg = newAvgImg;

}

else

{

currentIT.undoLastApply();

}

}

}

// Store the average image after this iteration

avgImg = new AvgImage(m_images);

models.Add(avgImg);

updateTerminationParameters();

}

3.2 Classification

The problem of classification can be formalized as follows. We are given a
universe with n different classes c1, . . . , cn and n platonic images that repre-
sent each of those classes I1, . . . , In. We are also given an image I of unknown
class c. We want to find which class the image I is a member of with the
most confidence possible. More formally, we want to find find i to maximize
P (c = ci|I).

In our case we have n = 5 different classes — AND, OR, NOT, NAND,
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and NOR — and want to find which gate an image is with the best possible
accuracy. We do this with a simple distance based classifier. What this means
is that we have defined a distance function d(I, J) that gives us a measure of
similarity between the images I and J (the distance is smaller the closer I and
J are to being the same image). We take the distance between the unknown
image I and the canonical images for each of our classes in congealed space
and we designate I to be whatever class is closest to it. The point of the
whole congealing process was to clean up the images to make this distance
based comparison more accurate. The tricky part of this classification is that
I must be in the congealed space of the class it is being compared to in order
for an accurate distance to be taken.

However, through each step of training, we saved the average image. Now,
in classification, we congeal the unknown gate to the sequence of average
images for each different class. Thus at the first iteration of classification we
compare the unknown gate to the average image saved in the first iteration
of our training, and at the kth iteration of classification we compare the
unknown gate to the the average image saved in the kth iteration of training.
Hence we transform the candidate image into the congealed space, so it
will be transformed to be more like the platonic version of itself, therefore
reducing noise for our distance-based classification step. This gives us five
different congealed images — IAND, IOR, etc. — which we can compare to
the platonic images for each class with the distance function d. We assign
I to be a member of the class that has its platonic image closest to the
congealed version of I.

4 Results/Discussion

We have two types of results from this project. Our qualitative results demon-
strate visually that the congealing process is working correctly and some of
the problems that can arise in that process. Our quantitative results are
not as encouraging, and show that we still need to do further work on our
classification method.

4.1 Qualitative Results

We visually represent our average images as a bitmap, where the probability
of each pixel being black is mapped to a corresponding gray-scale value. A
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pixel that has a high probability of being black will be close to black in our
average image, and likewise a pixel that has a low probability will be given
a faint gray color. Thus, as the congealing process continues, the image
appears to sharpen as the slightly misaligned gate symbols that make up the
average image are transformed to better align with one another. Moreover,
as the individual gates are better aligned, parts of the average image will also
become darker and other parts will become white. Thus we visually confirm
the fact that as we shift the individuals gates we are minimizing the entropy
and therefore getting closer to finding the platonic version of the gate.

The next several pictures illustrate some of the qualitative successes and
failures of the congealing process.

Figure 2: The average image for an AND gate before and after congealing.

Figure 3: The average image for an OR gate before and after congealing.
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In Figure 2 we observe the improvement that the congealing processes
has had on the average image for AND gates. In particular, the original
average image for the AND gate (on the left) shows that there seem to be
two different ways of drawing AND gates, on of which is more stretched out
horizontally than the other. The congealing process merges these two ways
of drawing AND gates and creates a much sharper and unambiguous image
that we use as our platonic AND gate.

Figure 3 illustrates a similar process to Figure 2, but it is interesting
to look at both figures together. The original average AND gate and the
original average OR gate have enough noise in them that they are actually
not that different. It is still possible for a human to distinguish between the
two gates, but notice that the one place that the AND and OR differ, the
straight versus curved backplane, is grayed out with uncertainty and variation
in both of the average images. This means that it would be really hard to
distinguish between AND and OR, and thus hard to take an unknown gate
and establish if it is AND or OR by comparing it to these average images.
Now consider the congealed images on the right. These are much sharper
all around and should be much more useful for distinguishing between AND
and OR, illustrating the usefulness of congealing.

Figure 4: The average image for an NOT gate before and part of the way
through congealing.

Figure 4 is a negative example of congealing. This is what can happen
when things go awry. Notice that the original average image for the NOT
gate is very noisy and contains to distinct orientations of NOT gates. When
we try to congeal this image our search algorithm is not able to rotate one set
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of NOT gates far enough to be on top of the other set. Instead it just congeals
to the point where the borders of the two orientations overlap, which is one
of the most unambiguous areas in the first image. The congealing process
rotates and shrinks each NOT gate in sequence until all that is left is a
very dark black spot in the middle of the image. A large part of the reason
that this happens is due to the high degree of noise in the data, and the
inability of our search over transformations to find the right transformations
to congeal the NOT. We tweaked our algorithm so that it used smaller steps,
and it prevented this shrinking to a single point and did improve the NOTs
somewhat. However, we would like to avoid having to do such tweaking,
which is why we would like to implement a more general search framework
for congealing in the future that uses a less ad-hoc search algorithm for
transforms.

4.2 Quantitative Results

Despite the encouraging nature of our qualitative results, our quantitative
results are actually very disappointing. The final run of data that we did was
on 64 by 64 bitmaps of gates that had had a gaussian blur applied to them
to allow the uncertainty in the original average images to work better with
the congealing process. Unfortunately for our congealing algorithm, this
increased resolution and gaussian blur actually helped the distance-based
classifier based on the non-congealed average images work much better than
the classifier of congealed images. We are not exactly sure why this is, but we
think that the gaussian blur smoothed out variability in the original images
and made non-congealed classification easier, whereas the sharper congealed
images no longer match very well with the blurred classification images. Our
results are as follows

Non-Congealed % correct Congealed % correct
AND 94 31
OR 83 22

NAND 92 69
NOR 17 100
NOT 13 13

The results for NOR and NOT are less significant because there were not
a large number of examples. It is plain to see that the non-congealed case
worked much better for AND, OR, and NAND. We have a large amount of
future work that we would like to do to investigate and fix this problem, as
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we think that our noise reduction procedure does have merit.

5 Future Work

There are several extensions to our project that we look forward to imple-
menting in the future. First, we would like to create a generic function that
maps from affine transforms to total entropy. This will allow us to use a
variety of numerical methods to minimize entropy. Currently we are only
using a naive hill descent algorithm, and sometimes we are getting stuck in
a local minimum. We had hoped to use more sophisticated methods such as
simulated annealing, but were unable to find numerical libraries for C# and
did not have time to write such algorithms ourselves.

We would also like to extend the congealing algorithm to do sub-part
recognition of gates. Instead of recognizing full symbols we would have the
recognizer instead recognize parts of symbols such as the bubble on NOT,
NAND, and NOR, the backplane of AND, NOT, and NAND, the backarc
of OR and NOR, etc. If we could recognize each of the subpieces of a gate
we could then combine those results to uniquely identify which full gate
was present. Even more importantly, we would be able to identify if there
were either missing or extra strokes in the gate we were trying to recognize.
This would help inform the grouping process of sketch recognition, which is
another problem we are pursuing in separate research.

Additionally, we would like to examine alternative distance metrics for
our distance based classifier. While we did try five different distance metrics
used in the literature along with our own entropy-based distance metric, we
feel that they were the main sticking point of our algorithm. Since gates are
so similar to each other, even when congealed, we believe that we need a
distance metric that focuses on differences between the platonic images and
measures the distance of a new image to all the features that actually make
a difference between the platonic images.

Finally, we would like to investigate more closely weighting the classi-
fication of unknown images by the probability of the transforms that were
applied to them, based on the probability of the transforms that were use in
training. This is something that is done in [1] and that we duplicate, but we
think that a closer look at this method may yield better results.
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6 Conclusion

Digital logic gates are particularly difficult to classify accurately because
they have such similar forms and are only differentiated by small features
that different individuals draw very differently. The concept of congealing
is to synthesize the “perfect” platonic version of each of the different gate
classes, with the hope that the platonic version of each gate will more clearly
exhibit the features that differentiate it from the other classes. While we
have shown that congealing has some problems, particularly with noisy data
congealing strangely, we have also shown qualitatively that congealing does a
very good job of creating a platonic image of a gate. While our quantitative
results are discouraging, we think that deeper analysis of our classification
mechanism will improve those results. Most of this paper was focused on
noise reduction through congealing, so the actual classification methods could
still use further development. We eagerly anticipate improved results with
some improvements to our classifier.

We would like to thank Professors Alvarado and Yong for their assistance
with this project.
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