Modeling Electrons in an Electrostatic Analyzer

Max Gibiansky

Based on a clinic project sponsored by SwRI.

JUNO Satellite

Electrostatic Analyzer

- Measures velocity distribution of electrons
- Complicated geometry, several voltages

Numerical Simulations

- Starting point for analysis
- SIMION software
 - Solves for E-fields
 - Launches particles

Scientific Computing Project

- Model a simplified ESA numerically
- Launch particles through the ESA
- Compare energies of electrons detected to those from theory or from SIMION

Simplest ESA

- 2D problem
- Inner hemispherical plate
- Outer hemispherical plate grounded
- Electrons 'detected' if they can go around the circle

Analytical results

Assuming the gap is small, the field is constant

$$\vec{E} = \frac{V}{r_2 - r_1} \hat{r}$$

- Balance centripetal force and force on electron
- To be detected, electron must have kinetic

$$T = \frac{\bar{r}qV}{2(r_1 - r_2)}$$

Non-ideal ESA

- A gap makes the problem more interesting!
- Outer plate has a thickness and a gap
- Electrons have to get through the gap to be

Algorithms

- Method of relaxation to solve Laplace's equation and calculate V
 - Discretize space currently on a cartesian grid
 - Set boundary condition voltages
 - Set the potential at each point to be the average of the points next to it, repeat until changes are small.

Algorithms

- Calculating E-field by taking the gradient of V
 - Second-order accurate centered difference formulas used in interior
 - First-order formulas would be used on edges
 - Doesn't matter V is fixed to 0 on outside edges
 - E-field interpolated linearly between gridpoints

Algorithms

- Trajectory calculation
 - Leapfrog method (second-order accurate)

$$x_{n+1} = x_n + v_n dt + \frac{1}{2} a_n dt^2$$
$$v_{n+1} = v_n + \frac{a_n + a_{n+1}}{2} dt$$

Current status

- Algorithms implemented and tested separately
 - Given exact field, error in trajectories is small
 - Given a grid and voltages, I can see fringe fields
- Future work
 - Put it all together
 - Improve accuracy and efficiency polar coordinates?
 - Make pretty pictures