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Variations on the Jumprope Assignment 

Problem Overview 

 Imagine for a moment, a jumprope fixed at both ends and rotating in space.  If simply left 

hanging, this rope would take the shape of a catenary due to the force of gravity pulling it 

downward; however, a much more interesting case is to examine the shape of the rope while it is 

spinning at some angular velocity.  Additionally, the effects on the shape if the density of the 

rope is non-constant and if rope is elastic so that it can stretch are also of interest. 

 

Setup and Equations 

 First, we will define the relevant parameters for the rope.  The rope will have length L 

with one endpoint located at the origin, and the other at a distance H along the x-axis.  The 

density of the rope will be given by the function )(sρ  which relies upon a parameterization of 

the rope so that s varies lineraly from 0 at the origin to L at the far end of the rope.  For the 

elastic case, we will use  to characterize the elasticity at various points along the rope; one 

can think of this as defining the spring constant as a function of the location along the rope.  The 

angular velocity of the rope will be given by w. 
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 To generate the equations for a rope, it is helpful to begin by looking at a free-body 

diagram for a small segment of the curve (fig. 1).  Summing the red tension forces with the blue 

acceleration forces yields 
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which can be rewritten as 
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the master wave equation.  From this equation, two systems of equations can be derived that 

describe the shape of a rope with variable density that is either inextensible or extensible. 

 To generate equations for the extensible case we must look more closely at the tension 

forces present along the rope.  We can rewrite this term as 
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where exactly how we define the term T  controls the elastic properties of the rope.  If ),( ts

sEtsT x=),( , where E is known as Young’s modulus, then the rope would be perfectly elastic.  

Instead of using this less realistic characterization of elasticity, one can use ( )1),( −= sktsT x  

which makes the rope linearly elastic where k, again, can be thought of as the spring constant for 

the rope.  At sufficiently high rotation rates, the dominant force in the system is a centripetal 

force which, in the rotating frame of reference, is given by .  Inserting this 

expression for a(s, t) in equation (1) yields 
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Substituting for T(s) with the expression for linear elasticity yields 
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Observing that  and that accordingly, jix )()( sysxs += ( ) ( )22 '' yxs +=x , turns (3) into an 

increasingly messy multi-component system; this is further complicated when you integrate both 

the x-component and the y-component to remove the derivative.  To handle these manipulations, 

Mathematica was used, and ultimately generated 

as the equations for x'' and y'', where rho is )(sρ  and omega is .  These equations are used 

with a shooting method to find the shape of the rotating rope. 
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 In the inextensible case, one starts from equation (2) and assumes that ),( tssx = 1 holds; 

this particular case allows the examination of the effects of variable-density, independent of 

elasticty.  For ease of representation and computation, (2) can be modified by substituting for xs 

and ys with ( )(cos t )θ  and ( )(sin t )θ , respectively; this has the added benefit of ensuring the 

inextensibility constraint is satisfied since it forces ),( tssx  to be 1.  The substitution yields  
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for the two components.  From the first equation we can find an expression for the tension, 

)cos()( θ
CsT = , and substitute it into the second to acquire the nonlinear equation 
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Differentiating this and dividing into a system of equations yields 
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which, when subject to the boundary conditions x(0) = 0, x(L) = H, y(0) = 0, y(L) = 0, and 

θ’(0) = 0, can be used to find the shape of an inextensible rope with variable density by the 

shooting method. 

 Each of the two sets of equations was coded up in Matlab.  To run, a variety of 

parameters were required to be set including w, L, and H.  In addition, both required an initial 

guess for two of their parameters: C and θ' for the inextensible case, and x'' and y'' for the 

extensible case.  From these initial guesses, the code attempted to solve for the shape of the rope 

via the shooting method, limited to 10000 iterations.  In many cases, the code was unable to 

converge on a solution, so many trials were necessary to find suitable combinations of initial 

conditions that yielded an interesting rope shape. 

 

Results 

 The results here presented build upon my work for assignment 4 in which I concluded 

that both the tension and the angular velocity could effect how many modes a given inextensible 

rope displayed and furthermore that the tension was dependent upon the length of the rope and 



the distance between the fixed points.  Generally, here, density and elasticity were explored 

while minding these other constraints – notably, keeping them constant across trials as much as 

possible. 

 The density of the rope was varied to see what effects this had on the shape of the rope.  

Two variant density functions were used: a linear function which increased from one end to the 

other and a sinusoidal function which was used to place “weights” along the rope in various 

places to observe the behavior.  Interestingly, the variable density caused some unusual shapes.  

One might expect that a normally distributed density would cause a symmetric response in the 

rope.  However, as figures 2, 3, and 7 show, even though the density is normally distributed, the 

apparently stable shape of the rope is not necessary something that matches our intuition; 

repeated tests shooting with these parameters converge similarly.  Considering the linearly dense 

ropes, it is interesting to observe that, in figures 4 and 5, the more dense sections of the rope are 

apparently more stable near the axis of rotation; one supposes that there is an element of 

conservation between the angular velocity and the relative masses that accounts for this.  

Additionally, it was again observed that changes in the tension would have an effect on the shape 

of the rope even if the density was not constant; this can be seen in figures 4, 5, and 6.   

 In the case of the elasticity, in the simple cases it is clear that the stretching of the rope 

has a noticeable effect on the shape of the rope – namely, it causes the center of the rope to 

extend further then the inelastic case.  Furthermore, if the elasticity of the rope is higher, this 

effect is less pronounced.  In both cases, these observations match general expectations.  Another 

observation that may be less obvious, but seems quite reasonable physically, is the fact that the 

stretching is not uniform along the rope; there is more stretching near the fixed points than in the 

middle.  Since there is a larger amount of rope (in terms of mass, for a uniform density rope) 



pulling outward when you view things from a point near the end, this seems reasonable to 

explain why more stretching occurs at these points near the end. 

 

Conclusions 

 Ultimately, the experimentation with density and elasticity demonstrated that this is 

definitely a computationally intensive problem.  Furthermore, it produced some interesting 

results which, without physical experimentation, one is left to wonder whether or not the 

modeled results actually match what one would see in the real world.  However, there certainly 

are enough results that make intuitive sense to indicate that, at least in some cases, the model 

used is, or at least seems to be, correct. 
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Figure 2:  

>> script(2, @(s) sin(s*pi/10)+1, @(s) (pi/10)*cos(s*pi/10)+1, 3, 10, [1.2; 1]) 
Optimization terminated: first-order optimality is less than options.TolFun. 
 
x = 
 
   0.779842902558538 
   2.761641886211272 
 
 
fval = 
 
  1.0e-007 * 
 
  -0.467420657734863 
   0.097856102665439 
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Figure 3: 

>> script(10, @(s) abs(sin(s*pi/5))+1, @(s) (pi/10)*abs(cos(s*pi/5))+1, 3, 10, [2; 600]) 
Optimization terminated: first-order optimality is less than options.TolFun. 
 
ans = 
 
  1.0e+003 * 
 
   0.001230335943632  -0.000000000000044 
   3.434546702096819  -0.000000000000085 
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Figure 4: 

>> script(10, @(s) s+1, @(s) 1, 3, 10, [2; 60]) 
Optimization terminated: norm of relative change in X is less 
 than max(options.TolX^2,eps) and  sum-of-squares of function  
 values is less than sqrt(options.TolFun). 
 
ans = 
 
   1.328865264512805   0.003592518871093 
  61.947033302374741  -0.000687400115341 
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Figure 5: 

>> script(10, @(s) s+1, @(s) 1, 3, 10, [2; 300]) 
Optimization terminated: first-order optimality is less than options.TolFun. 
 
ans = 
 
  1.0e+002 * 
 
   0.013470298123734   0.000000000042472 
   2.566461956142275  -0.000000000009162 
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Figure 6: 

>> script(10, @(s) s+1, @(s) 1, 3, 10, [2; 1200]) 
Optimization terminated: norm of relative change in X is less 
 than max(options.TolX^2,eps) and  sum-of-squares of function  
 values is less than sqrt(options.TolFun). 
 
ans = 
 
  1.0e+003 * 
 
   0.001367290443937   0.000001181611726 
   1.100985398907829   0.000000225817767 
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Figure 7: 

>> script(10, @(s) abs(sin(s*pi/5+2.5))+1, @(s) (pi/10)*abs(cos(s*pi/5+2.5))+1, 3, 10,  
 
[2; 60]) 
Optimization terminated: first-order optimality is less than options.TolFun. 
 
ans = 
 
   0.597139945602211  -0.000000000022425 
  80.566095534824612   0.000000000251374 


