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Abstract

I present Suplex, a system for predicting the results of mixed martial arts matches. The system uses

a number of techniques from graph theory and games, the most important of which relies on improving

the well-known Elo system by separating fighters out by styles. I test the commonly held hypothesis that

“styles make fights” and attempt to utilize it to improve my predictions.
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1 Introduction

Most people agree that making money is usually a good thing. It is such a good thing, in fact, that gambling
is a $85 billion industry in America alone [1]. Most of this gambling is on games of chance which, alas, we
cannot help our fellow man profit from. On the other hand, people also gamble on other events, like sports,
which are not entirely due to chance. It is quite possible, in theory, for me to use mathematical knowledge
to predict the results of sports matches, and if I can do so better than Vegas–as they say, beat the spread–I
stand to make a pretty penny. This paper summarizes Suplex, a system I built to do just that. I attempted
to use my knowledge of graph theory, numerical optimization techniques, and standard approaches to games,
along with a dose of domain knowledge, to produce accurate predictions for mixed martial arts matches,
with varying degrees of success. In particular, I tried to examine a commonly held piece of wisdom in mixed
martial arts, the idea that “styles make fights” and see if the data holds the same conclusion, with some
surprising results. I will begin by giving some background on mixed martial arts and sport prediction.

1.1 Mixed Martial Arts

Mixed martial arts is a recently developed combat sport, whose first professional match occured in 1993.
It has relatively few rules as compared to similar sports like boxing, only banning a few techniques–like
eye gouging, punches to the back of the head, and headbutting–considered extremely dangerous to the
health of the participants. For the most part, competitors can use their choice of fighting style, techniques,
and tactics, and many martial arts find success in professional competitions, such as Muay Thai (Thai
kickboxing), Brazillian jiu-jitsu, Sambo (a Russian grappling style), Greco-Roman wrestling1, and many
more. In fact, mixed martial arts resulted from the desire of experts in various martial arts to determine
whose techniques were best in a straight fight.

It should come as no surprise, then, that styles are considered by MMA experts to play a key role in the
outcome of matches. While the variety of styles employed by professional mixed martial artists makes the
situation extremely complicated, in essence we deal with a situation similar to rock-paper-scissor: there is
no best style, only relative advantages and disadvantages in particular matchups. One simple example might
help make this clearer:

• Kickboxers rely on powerful strikes to knock out opponents, but often are inferior wrestlers and inex-
perienced on the ground.

• Jiu-jitsu fighters rely on taking an opponent to the ground, where they can apply dangerous submissions
(joint-locks and chokes) but generally have sub-par striking.

• Sprawl and brawl fighters rely on their wrestling experience not to take down opponents, but to avoid
being taken down themselves. They then use striking to defeat their opponents.

How do these three types interact?

• Jiu-jitsu fighters, while unable to stand with kickboxers, can usually take them to the mat, where the
kickboxer will be unable to effectively strike. So, we find that jiu-jitsu fighters defeat kickboxers by
submission.

• Sprawl-and-brawlers, however, have strong wrestling pedigrees, and can defeat a jiu-jitsu fighter’s
takedowns. Since the fight then remains standing, the sprawl-and-brawler’s superior punches and kicks
usually defeat the jiu-jitsu fighters.

• Kickboxers, on the other hand, have better striking than sprawl-and-brawlers. Since the kickboxer
never attempts takedowns, the “sprawl” never comes into play, and the kickboxer should usually
knock out the sprawl-and-brawler.

1Suplex is in fact named after a Greco-Roman technique.
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Thus, most experts do not believe we can simply assign ratings or strengths to various fighters; we can’t say
that Chuck Liddell is just a better fighter than Tito Ortiz because Chuck won, because Liddell’s sprawl-and-
brawl is designed to defeat submission fighters like Ortiz.

1.2 Prediction Background

This is a pity, because one standard technique in predicting the results of sports in games is the Elo system,
which relies on assigning each fighter a numerical ranking, and assuming that a higher-ranked fighter can
usually defeat a lower-ranked fighter. Invented by a Hungarian mathematician to help rate chess players, the
system has found phenomenal success both in chess and elsewhere, in various computer games, Go, Scrabble,
football, basketball, and soccer2 just to name a few. The only requirement for Elo to work with a particular
game is that it is possible to assess the overall strength or rating of a player. Suppose player A has a rating
of RA points, and B is rated at RB. Then, the Elo model, derived from the logistic distribution, tells us that

P (A wins) = E(A, B) =
1

1 + 10
RB−RA

400

Thus if RA = 2000 and RB = 1600, we find that A has a 10

11
chance of winning a match between them.

While simple, this model often accurately predicts match results, explaining its success.
However, how do we determine A and B’s ratings? Typically, new players start out with an arbitrarily

assigned rating, traditionally 1600. Then, as the new player plays games, winning and losing some, we
compared his expected performance with his actual performance, and adjust his rating commensurately.
For example, if a 1600-rated players plays and beats a 2000-rated player, he has upset the favorite. Since
he was expected to win 1

11
of his games, and actually won 100% of them, he will gain k

(

1 − 1

11

)

, where
k is a parameter, often 16 or 32, that determines the flexibility of ratings. Similarly, his opponent has
underperformed expectations, and will lose the same number of points.

This method allows ratings to gradually change as players continue to play and improve or get worse,
but in practice we can use other methods. If we have a large set of players and match results, we can simply
iterate over the matches many times, adjusting with a very small k, and the ratings for these players will
rapidly converge to the “best” ratings for explaining the results.

It should be clear why we need an absolute measure of strength for Elo to work. If we have three groups
who beat each other transitively, each player will win half his games and lose half, and most ratings will stay
around the 1600 level, without any indication that the jiu-jitsu fighters, for example, are much more likely
than 50% to beat the kickboxers. So, if “styles make fights” is indeed a correct observation, we should not

find Elo an effective method of making predictions.

1.3 Goals

If Elo isn’t a good idea, what should I use? Professional bookmakers use domain knowledge, intuition,
and many other factors to set odds on MMA fights. Predictions are made based off estimates of strength,
athleticism, psychological preparation and previous results, among other things. I, however, want to make
my predictions by computer, and it’s hard to explain to a computer that, say, my intuition tells me that
this fighter beats that one for some subtle reason. There is a lot of data, however, in past performance:
despite only existing for 15 years, professional mixed martial arts has had many matches, and records of all
of them exist. Moreover, it’s easy to tell a computer event results. It should be relatively simple to convince
a computer to make predictions just from examining the more than 45,000 professional fights on record, and
this seems an admirable goal. Can we make accurate predictions using just that data?

I do not expect that this method should be able to beat the spread. If the only thing I consider, when
asking who will win a future match, is the result (win or loss) of various past fights, how can I conceivably
compete with a bookmaker who consults that information, and many other useful facts about the fighters in
question? I even know less about the results of fights than this hypothetical bookmaker; for simplicity, I only

2In fact, Elo is the official rating system for at the very least chess and women’s soccer.
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consider wins and losses, and there is generally considered to be a great difference between, for example, wins
by submission or knockout, and wins on time (by a judge’s decision.) So, I do not believe it is reasonable to
expect my methods to be profitable directly, only interesting. Hopefully, my predictions should be at least
better than random.

In particular, I am interested in considering applications of graph theory to this problem. I have data
consisting of a large set of fighters, and every fight that has taken place between members of this set. There
is a natural embedding of this as a graph; we have a vertex for each fighter, and an edge for each fight,
from the winner to the loser. There is an extensive literature on interesting ways to analyze graphs like this;
shouldn’t I be able to exploit well-known graph algorithms to produce good predictions? In the next section,
I will describe how I went about this problem.

2 Methods

The first challenge I faced pruning the provided data. The set of fighters and fights I began with had 45,336
fighters in it, and 65,330 fights. This presented two problems:

• It was too big to practically work on. As we shall see, many of the algorithms I need to use are
computationally expensive and completely intractable on a graph of this size.

• It contained a lot of noise. The vast majority of these fighters had fought once, and in small events
no one had ever heard of or cared about. Not only was I not interested (since no one would bet on
it) in predicting the results of West Virginia Hilltown Fight Night, the noise this introduced obscured
real trends–in short, I cared a lot if someone had ten wins against high-level expert fighters, but not if
someone had ten wins against nobodies never seen before or since.

I used simple graph techniques to reduce the graph to one I “cared about.” I picked a small integer k,
then found the set of vertices (fighters) with k or more edges (fights.) I took the induced subgraph of that
set (threw away all the other fighters, and all the fights that involved those unimportant fighters.) I then
repeated this process til I got to a fixed point, a set of fighters such that each one had fought other people
in the set at least k times.

This worked extremely well. With k = 5, I reduced the graph to 2,196 fighters, and with k = 8, I got 332
fighters. These sizes were much more computationally tractable (if barely, in the 5-graph case.) Moreover, I
found that as I hoped, for the most part I threw away unimportant fighters and kept important ones. The
top fighters, which I knew from outside experience to be extremely good and also wagered on, generally
stayed in the smaller graphs, whereas the pruned fighters were the ones I had never heard of.

Next, I had to come up with a model for doing predictions. I wanted to test the style hypothesis, or if
styles made fights, so I made an observation:

• Elo rankings won’t work, in theory, because fighters of different styles can’t be directly compared. If
we calculate Elo rankings inside a specific style, it should work well.

Thus, if I break fighters down by styles, I should be able to find Elo rankings within styles, and easily predict
whether one kickboxer will defeat another. What about predictions for fighters in different styles?

Well, this model was predicated on some styles “beating” others. If that’s accurate, I should be able to
find that on average, style A beats style B. I can then combine the proportion of A versus B wins with the
A-fighter’s ranking within his style and the B-figher’s ranking within his style to find an overall prediction.

How could I find styles? Well, the first obvious method would be to examine what fighters claim their
styles to be, but that would work poorly. Styles are poorly reported; many fighters simply don’t list one, and
many others give either very general styles, like “mixed martial artist”, or very specific and more marketing
than reality based styles, like “thug-jitsu.” The key problem in this project would be inferring styles, and I
made another observation:

• The problem lies in non-transitivity, with kickboxers beating sprawlers beating jiu-jitsu fighters beating
kickboxers. These non-transitive results translate to cycles in the directed graph of who beat who; in
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a set of fighters of the same style, we should find very few cycles. Thus, I should try to partition the

fighter graph to minimize cycles within the induced subgraphs. Each set in the partition will then be a
“style.”

This, however, is harder than it sounds. To evaluate the goodness of a partition, I need to know how many
cycles each induced subgraph contains. However, the best known algorithms for counting or enumerating
cycles [2] are at least exponential in the number of vertices. Moreover, we have good reason to believe3 that
the problem of partitioning is even harder–completely intractable. Thus, we must resort to heuristics and
approximate solutions.

To find a heuristic, I note an interesting property of adjacency matrices. We see immediately that Aij,

A =


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Figure 1: A small directed graph A

the entry in the ith row and jth column, is the number of paths (here, either one or zero) of length 1 from
vertex i to vertex j, since there’s a path of length 1 if the vertices are adjacent and not if they are not.

A little experimentation will reveal a more useful fact, which isn’t difficult to prove: An
ij , the entry in the

ith row and jth column of the nth power of the adjacency matrix, is the number of distinct paths of length
n from i to j! (We can prove this trivially by induction, examining the entries multiplied in a single matrix
multiplication.) So, if there is an n-cycle in the graph that includes vertex i, we will find An

ii 6= 0, and if no
such cycle exists, it will be zero.

But how do we exploit this to count cycles? We cannot, for example, say that if A8
33 = 4 that there are 4

8-cycles involving vertex 3. We will see a non-zero value there from any two 4-cycles, or any 4 2-cycles, or any
2-cycle and 6-cycle, or. . . Moreover, there’s something of a combinatorical explosion in paths, unsurprisingly,
making the values of Ak

ii get relatively large as k grows so long as there are any cycles involving vertex i.
Nonetheless, let us try to find a useful heuristic. If there are few cycles, we should find a low value along

the diagonal of the powers of the matrix:

tr(A) + tr(A2) + tr(A3) + . . .

But since trace is a linear operator, that’s just:

tr
(

A + A2 + A3 + . . .
)

3Personal communication from Professor Chen at Pomona.
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We should probably weight down higher powers, since we care less about longer cycles (they say less about
non-transitivity of rankings, and we’ll find way more of them due to the combinatorical explosion.)

tr

(

A +
A

2!
+

A

3!
+ . . .

)

And since we’re finding a partition to minimize this quantity, it’s OK to add something constant to it:

tr

(

I + A +
A

2!
+

A

3!
+ . . .

)

But that’s just the matrix exponential!
tr

(

eA
)

Thus, I hoped that if I found a partition so that I minimize the sum of the traces of the matrix exponentials

of the adjacency matrices of the induced subgraphs, I will find a partition with few in-set cycles, and thus be
close to finding styles. I tried to find these partitions for 3, 4, and 5 styles (thus for 3, 4, or 5 sets in the
partition.)

Finding partitions, however, still wasn’t easy. As a reference, note that the number of partitions of a set
of n elements into k non-empty set are described by the Stirling numbers of the second kind, Sn

k [3]. For the
smallest graph I consider, if I break it into (say) 3 styles, we have:

S332

3 ≈ 10157

This is staggering. It’s as if I was trying to find a maximum of a function on a unit cube in R
3 to a resolution of

10−52 or better in each direction. Throw in the fact that the function is highly nonlinear, barely continuous,
and most importantly, that evaluating each point takes more than a second on a high-powered server in
Mathematica, we see the difficulty.

Nonetheless, there are well-known methods for finding optima of functions, and I assumed (correctly, as
it turned out) that standard methods could be made to work. I decide to use the simple method known as
random-restart hill climbing: pick a point, move along the gradient to a local optimum, and then start again
somewhere else randomly. Repeat until you have enough local optima you like, and then pick the one you
like the most.

The problem with hill-climbing was simple: the adjacency factor, so to speak, was far too high. Even in
R

3, there are only (so to speak) 6 directions I can go. Even with the simplest possible model of adjacency I
could think of, calling two points adjacent if I could convert one into another by moving one vertex between
sets:

{

{1, 2, 3}, {4, 5, 6}
}

∼
{

{1, 2, 3, 4}, {5, 6}
}

I still would have more than 300 points adjacent to each point, and with larger graphs, proportionally
worse. Given that it took noticable time to evaluate each point considered, this meant that random-restart
hill-climbing never got to the restarts: I couldn’t even make it all the way up a hill, even given hours to
calculate.

However, I noticed an interesting pattern in the motion. The random points would quickly see great
improvement, then slow down, taking longer to find any move that would improve the heuristic, and finding
smaller improvements when they did exist. I interpreted this as my algorithm quickly getting near minima,
but having trouble finding exactly where they were.

Oh well; near minima is still pretty good, especially considering I’m already using a rough heuristic .
Remember that I am dealing with a highly intractable problem–I was ecstatic that I could even try and get
approximate solutions4 and thus I was OK with this behavior. Since I didn’t want my algorithm to hang up

4This is especially true considering I have reason to believe the counting problem is #P-Complete, a complexity class that

is not only hard to solve, but considered to consist of “hard to approximate” problems. In the future, I plan to avoid picking

class projects that summarize to: approximate a problem that can’t be approximated. Just FYI.
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trying to find exact minima, I decided to change my method somewhat, implementing an small optimization
I have termed Add-Search, since I have not yet found it referenced in optimization literature.

The name comes from the behaivor, which models a child with attention deficit disorder. Just like I would
in the situation, I tell the computer that if it can’t quickly find an improvement nearby the current point, get
bored and assume it’s probably a minimum. So, instead of enumerating all neighbors of a candidate point,
I pick N (a configurable parameter) neighbors of random. If any improve, I move there and start again,
just as in hill-climbing. If not, I terminate the search, reporting that point as a local minimum, and go to
the next random starting point. I also added a parameter δ, defining the minimum improvement “worth
investigating”. By tweaking N and the number of starting points considered, I can change how the search
functions. With higher N and lower number of starting points, the search is “deep”: I carefully investigate
a few starting points. The other way around, the search is “wide”: I find very rough minima near a lot of
starting points. In practice, both ways work; with any reasonable values for parameters, I get about the
same “optimization per hour of computation”, so to speak.

This worked extremely well. Though it took a lot of computation, I was able to generate a lot of very
promising candidate partitions with very low values for the trace of the matrix exponential. At that point,
my job was simple. I took each subset in the candidate partitions, applied iterated Elo to find rankings in
that “style”, and decided how to combine relative Elo for two sets and the overall performance for those two
sets.

This I solved with a simple linear regression. For each pair of styles/sets A and B, I singled out the fights
in my database with one fighter from A and one from B. For each fight, I created a pair (pe, r), where pe

was the Elo prediction (a probability A would win) and r was a result (1 if he did, 0 if B won.) I then used
a linear model, stating my overall prediction would be:

p = c0 + c1pe

And optimized for the ideal parameters c0 and c1. That was enough information to do predictions. If asked
to predict the result of a fight between a and b, I would:

1. Look up the styles A and B for a and b.

2. Use the Elo formula to make a prediction ep for a fight between a and b.

3. If A = B, just return that prediction.

4. Otherwise, look up the corresponding values c0 and c1 for that style pair, and return c0 + c1ep.

Note that this method allowed me to integrate a simple Elo-only model easily. If the only factor to consider
was Elo, with no styles, I just took the list of fighters and considered them all members of the same style.
This simplified the coding greatly.

3 Data

At this point, I had a number of models (determined from partitions into different number of subsets, of
differently sized source graphs, and often several candidate partitions in each case5.) It was time to determine
which models accurately predicted fights, and to what extent.

I tested my various models on a small but representative set of fights with known results. While I
could assess success on various criteria (statistical goodness-of-fit tests, for example) I decided to exploit
my purpose here–gambling predictions–to evaluate predictions. I took the Vegas odds on these fights, and
compared them to the odds my models produced. When my model thought a fighter was more likely to win
than Vegas did, it placed a “bet” on that fighter. I then added up the wins and losses each model incurred
per dollar bet, and considered that the model’s performance.

5For simplicity, when I have multiple candidate partitions that correspond to the same model–say, two possible breakdowns

of the smallest candidate graph into three sets–I present the best data from any of them.
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I was immediately able to discard some models. For example, the partitions of te larger (3000-fighter)
test graph) produced uniformly awful predictions. The simplest explanation here, and the one I favor, is
that I simply hadn’t found sufficiently good minima. This was something I feared likely; on the larger graph,
evaluating a single point often took as long as 10 seconds. I was able to do only very minimal optimization,
even with Add-Search. Despite finding significant improvements from the initial values of the heuristic, I
think I just didn’t find good enough results. I’ll name the remaining models for convenience:

Model name Description
Elo-All Elo run on the entire graph, all 45,000 fighters

Elo-Large Elo run on the large test graph (with 3000 fighters)
Elo-Small Elo run on the small test graph (with 300 fighters)

3-Part The small graph partitioned into 3 styles
4-Part The small graph partitioned into 4 styles
5-Part The small graph partitioned into 5 styles

The rest of the results were both interesting and inconclusive, and in a particularly surprsing fashion,
depended heavily on the betting model used–most discussion of betting focuses on making accurate predic-
tions, and assumes the correct bets follow naturally. If every time we identify an edge (a bet where Vegas
has set the odds such that we think there’s positive expected value in taking it; in other words, being offered
2:1 odds when we think the fight is 50/50) we bet some constant amount, we see results like this:

Model Elo-All Elo-Large Elo-Small 3-Part 4-Part 5-Part

Winnings per dollar bet 0.111 0.111 0.162 -0.094 -0.094 -0.292

However, What if we bet proportionally to the edge that we found? In other words, if we are offered 1:1
odds, why not bet more if we think one fighter has a 90% chance of winning as opposed to only a 60%
chance? Surely both are good bets, but we’re more sure of the edge offered to the fighter if we think he’ll
win 90% of the time. Betting like that gives us:

Model Elo-All Elo-Large Elo-Small 3-Part 4-Part 5-Part

Winnings per dollar bet 0.104 0.127 0.179 0.097 0.229 -0.166

We see that this betting method greatly benefits the style models, without a similar benefit to the simple
Elo models. This is fascinating, but I have yet to determine why it happens. There are other conclusions I
can come to, however, from these and other data I can collect:

• My hypothesis that throwing away “unimportant” fighters is valid. I get better predictions from the
smaller graphs. I can’t take this to extremes–in the 300 fighter graph, I’ve already started to throw
away fighters whose results I care about predicting–but in general, it is safe to prune the graph.

• 4-partitioning the fighter set seems to work best (the data show this somewhat, since the best partition
result comes from a 4-partition, but other data I have make this even clearer. For example, these are
the results from the best partition models–however, most of the 4-partitions are better than most of
the 3-partitions consistently, even if the best 3-partition sometimes is as good as the best 4-partition. I
thus conclude that if my partitions accurately represent styles, that the underlying data support there
being exactly 4 styles.

So, Suplex is able to predict MMA to some extent. My limited testing and small positive EV prevent me
from conclusively claiming that the system works, but I think I can say that Suplex isn’t totally broken
and can produce at least some good predictions.

4 Conclusions

In short, I exceeded my expectations: I not only did better than random chance, I came close to making money
with several models! Nonetheless, I was disappointed somewhat, because it was clear that as implemented,
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the style hypothesis wasn’t a big win. Depending on the measurement, it might be improving predictions or
might not, but it wasn’t a clear positive.

There are several reasons why this could be. The simplest would be that it’s wrong, that we can simply
ignore styles and assign overal ratings, but I refuse to accept this. It’s more than conventional wisdom; we can
see it in practice in every fight we watch. I in fact have seen mediocre sprawl-and-brawlers decisively defeat
some of the best jiu-jitsu practictioners in the world, simply due to their gameplan having an advantage
against jiu-jitsu. Styles surely change results; I just need to figure out how. The two more reasonable
possibilities I can think of are also quite plausible: either my heuristic/optimization isn’t good, and I’m
not finding proper styles, or I’m using style information wrong. The second is particularly interesting to
consider. Remember that as is, a fighter’s rating is determined solely by his fights with other people using
his style. This penalizes fighters who, due to the vagaries of matchmaking, mostly fought other styles–some
fighters, in fact, have no in style fights in several of my models, and thus have no information determining
their Elo rating. Thus, I think it’s possible I’m throwing away more information in style breakdowns then
using them in my model gains me. Having the style information change predictions in some more subtle way
might be more useful.

5 Future Work

While I have yet to make predictions I would personally put money on6, I am very pleased with these results
not because I trust them, but because they show these techniques have promise and point out several places
I could go to improve them. Some possibilities for future work include:

• Improving the betting model. Whether to trust overal Elo or style splits, as we saw, depends drastically
on how we bet–constant, or in proportion to how big our edge is. What’s the right way to bet? Is
there a right way, in terms of game theory? There is fascinating work to be done here.

• Drastically improve testing. My conclusions are predicated on a small set of fights that are partially
contained within the training data. This is justified because if the model can’t predict the values
it’s trained on, it can’t reasonably predict anything, and more justified by the sparse available data.
Georges St. Pierre, the consensus best mixed martial artist alive, has all of 18 fights under his belt,
and in my smaller data set, he has only 11. Compare this to chess players, whose Elo rankings are
determined from hundreds or thousands of matches–I really can’t afford to throw anything more away
to reserve as testing data. Nevertheless, more testing with more data (for example, as new fights
happen, which won’t be contained in my database) might allow me to make conclusions with more
conviction.

• Determine styles differently. While I did very interesting work, with some cool results, using the matrix-
exponential heuristic, I’m not convinced that it produces the best results here, and most importantly,
it’s hard to see why it picks the partitions it does. Fundamentally, what I’m looking for are two sets of
fighters, A and B, where fighters from A do better (or worse) than otherwise expected against fighters
from B. There are many ways I can conceive to find such sets, and I think some of them may have
more promise.

• Utilize the style hypothesis differently. My conclusion above was that I paid too great a price in ranking
fighters by segregating out all fights that were out-of-style. Perhaps I can more subtly and effectively
use the style information I gain, as opposed to crippling my overall rankings.

• Optimization. It is said there are two rules of optimization: don’t do it, and don’t do it yet. I think I’m
at the “yet” stage here. As mentioned, most of my partition results from the large graph were rather

6In case you’re more impulsive than I am, B.J. Penn is facing Sean Sherk in two weeks and is favored 2:1, whereas my

models consistently give Sherk a 3:2 edge. On the same card, Lyoto Machida is also a 2:1 favorite to beat Tito Ortiz; my models

consistently call him a 10:1 favorite or better. Just saying, that’s all. If you’re dumb enough to actually bet on my advice, you

deserve what’s coming to you, though. . .
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poor, and I conjectured that this was due to not having very good optima there. That was due to the
high cost of optimizing on such a large graph–I could search much better on the smaller graph since it
was cheaper to evaluate. If I rewrote my search algorithms to avoid using Mathematica (whose graph
libraries are, in my opinion as a programmer, awful, being slow, buggy, and awkward) and instead use
a fast C/C++ graph library, hopefully one that has been well parallelized, I would be able to do much
better search. This would pose a significant opportunity cost, as I make heavy use of Mathematica’s
numerical computation routines, which are pretty good, but might be worth it.

Thus, while I don’t yet have a million dollar betting application yet, I think the approaches Suplex

uses are promising, and may yet create such an application eventually.
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