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 My goal was to simulate the motion of a football, particularly when it bounces off 

the ground.  To do so, I first calculated the equations of motion for torque free motion.  

To find these, we begin with Euler’s equations for torque free motion 

 
where the I are the moments of inertia about the corresponding axes and the ω are the 

angular velocities in the rotating frame.  First, position the football so that the angular 

momentum vector of the ball is aligned with the z-axis and the center of the ball is on the 

origin.  We then solve Euler’s equations using the cylindrical symmetry of the football 

 
which greatly reduces the third equation above.  Then we change frames to using the 

Euler angles φ, θ, and ψ using the following relations 

 
The Euler equations rotate the angular momentum vector relative to a fixed coordinate 

system.  After solving these equations we end up with three equations for the time 

derivative of the Euler angles.  This procedure to solve the equations can be found in the 

Mathematica notebook.  Also refer to the code to see which Euler angle system is being 

used.  Now φ(t), θ(t), and ψ(t) are solved so we can rotate the ball over time in a torque 

free environment.  All of the parameters and equations were drawn from Peter J. 

Brancazio’s paper Rigid-boyd dynamics of a football.  In the MATLAB code I have also 

included a way to rotate the angular momentum vector to some initial state so that the 

precession can occur in different orientations. 

 The next step is to try and describe the behavior of collisions.  First, we need a 

way to detect the collisions.  The most general solution is probably to find out when a 

surface describing the ball intersects with a plane representing the ground.  One could 

conceivable come up with an equation for an 

ellipsoid and then at every time step, find the 

minimum z value of the ellipsoid and see if 

it is at or close to zero.  I found that this was 

too complicated given the time-constraints 

and could also be computationally expensive.  

So I approximated an ellipsoid using four 

intersecting spheres seen here.  They are 

much easier to work with both conceptually 

and computationally. 



 Now that we have established how to detect collisions we now need to be able to 

describe the motion of the ball when it collides.  After extensive research, I found several 

problems in using the Euler angles to solve for the motion of the ball.  Although Euler’s 

equations with torque can be solved just fine numerically, when turning that into motion 

using Euler angles there is the problem of gimbal lock, which is to say, there are 

singularities in the equation when transitioning between complete rotations, such as from 

0° to 360°.  One solution to this is to switch between different Euler angle representations 

when gimbal lock occurs, which I considered too difficult to implement given the time 

constraints.  The second solution is to use quaternations to describe the rotations.  

However, I am unfamiliar with quaternations and there was also a lack of time to learn 

the math. 

 Thus, the motion described in the script is completely arbitrary.  However, it does 

have inklings of some of the physics I wished to describe.  The first is when the ball 

collides, there is an impulse given by the normal force of the ground on the ball.  We split 

that normal force into two components, one directed toward the ball’s center of gravity 

and the other perpendicular to that axis.  The force toward the center of gravity moves the 

ball like a point mass, while the force that is perpendicular imparts a torque.  We then 

decide a coefficient of restitution that describes how much energy is lost thermally. 

 The second aspect of the collision physics is rolling of the ball.  This is not in the 

current implementation of the script.  In order to implement rolling, I need to fall back on 

the sphere segment representation of the ellipsoid.  This is because I still do not have an 

expression describing the surface.  Also, rolling spheres are easy to model and the script 

would only need to determine which sphere was currently in contact with the ground.  

The only concern is the issue of calculating the moment of inertia to describe the rolling 

motion.  Either I could condense the rest of the ball onto several point masses on the 

surface of the sphere or use a parallel axis theorem of some sort to approximate the 

moment of inertia of the ball assuming the spherical rolling was not too different from 

ellipsoidal rolling.  Another issue with the rolling motion is the matter of maintaining the 

Euler angle representation while rotating the ellipsoid about an origin that was not the 

center of gravity.  The only solution I have determined thus far is to still rotate about the 

center of gravity but also add a compensating translation, which is mathematically 

equivalent.  As seen in the diagram below, rotating x about the origin to make x’ is the 

same as rotating x about P to make y and then adding a translation t. 

 
In conclusion: 3D is hard. 
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