## Genetic Drift and Natural Selection: An Exploration of Allele Frequencies Within a Population

Leslie Mallinger Harvey Mudd College

Math 164: Scientific Computing

29 April 2008

## Presentation Outline

- Definition of an allele
- Modeling genetic drift
- Trends in genetic drift
- Modeling natural selection
- Future work

## What is an allele?

- A given population often contains many versions of the same gene.
- An allele is one version of a gene at a given location, or locus, along a chromosome.
- Each person inherits two alleles for each gene—one allele from each parent.

## What is an allele?



## Genetic Drift

- Force that acts to change allele frequency
- Based on sampling error during mating

- Force that acts to change allele frequency
- Based on sampling error during mating

### Assumptions

• Population size remains constant

- Force that acts to change allele frequency
- Based on sampling error during mating

- Population size remains constant
- Mating is random

- Force that acts to change allele frequency
- Based on sampling error during mating

- Population size remains constant
- Mating is random
- All individuals survive to reproductive age and reproduce with the same frequency

- Force that acts to change allele frequency
- Based on sampling error during mating

- Population size remains constant
- Mating is random
- All individuals survive to reproductive age and reproduce with the same frequency
- There are no occurrences of migration or genetic mutation

- Force that acts to change allele frequency
- Based on sampling error during mating

- Population size remains constant
- Mating is random
- All individuals survive to reproductive age and reproduce with the same frequency
- There are no occurrences of migration or genetic mutation
- The population contains only two types of the allele of interest

# An Example of Genetic Drift



Generation 2 ? A, ? B

# An Example of Genetic Drift





## Genetic Drift Over Several Generations



## Genetic Drift Over Several Generations



# Two Ways to Model Genetic Drift

#### "Brute Force" Method

- Directly simulates random picking of gametes from a gene pool
- Create a vector of "alleles"
  - Random real numbers on the unit interval
- If less than frequency of allele A, reset number to 1
  - Otherwise, reset number to 0
- Summing the components and dividing by the number of alleles gives the new frequency of allele A

# Two Ways to Model Genetic Drift

#### Binomial Distribution Method

- Uses MATLAB's binornd(n,p) function to generate random numbers from the binomial distribution
  - sample size = number of gametes
  - probability = frequency of allele A in the previous generation
- The output of the function gives the allele frequency of the subsequent generation

# Visual Comparison of the Two Techniques





# Comparison of Runtimes



# Effects of Population Size



# Effects of Population Size



# Effects of Changing Initial Frequency



## **Natural Selection**

- Another force that acts to change allele frequency
- Based on differences in reproductive success, or fitness

- Another force that acts to change allele frequency
- Based on differences in reproductive success, or fitness

### Assumptions

• Mating is random

- Another force that acts to change allele frequency
- Based on differences in reproductive success, or fitness

- Mating is random
- There are no occurrences of migration or genetic mutation

- Another force that acts to change allele frequency
- Based on differences in reproductive success, or fitness

- Mating is random
- There are no occurrences of migration or genetic mutation
- The population contains only two types of the allele of interest

- Another force that acts to change allele frequency
- Based on differences in reproductive success, or fitness

- Mating is random
- There are no occurrences of migration or genetic mutation
- The population contains only two types of the allele of interest
- An individual's fitness depends only on his genes—not on the environment

## **Natural Selection**

What happens when individuals with a particular allele always reproduce and individuals without it reproduce less often?



## Natural Selection and Genetic Drift

When both genetic drift and natural selection are at work...



## Future Work

#### Natural Selection

 Extensively explore the effect of changing fitness levels and initial allele frequency