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1 Linear Mie ScatteringMie scattering refers to the scattering of light from spheres with a radius comparable tothe wavelength of the light. In the linear case, simple Mie scattering is well understoodand widely utilized for many applications, including the sizing of small particles, studies ofatmospheric optical e�ects, and describing the nature of interstellar dust by examining thepropagation of starlight through dust clouds2 .However, classical Mie theory, though it yields an exact series solution for the scat-tered �eld, makes some assumptions which are not representative of real scattering situa-tions. In particular, the theory is derived under the assumption of a single wave sittingisolated in free space, illuminated by a single frequency plane wave. In a real laboratorysituation, the particles in question are typically delivered in some sort of aerosol system ( ifthey are liquid) or sit in an array on some dielectric substrate ( if they are solid) . Thepresence of additional dielectric materials in the vicinity of the sphere can potentially alterthe scattering pattern in ways that ordinary Mie theory cannot account for.Moreover, our incident �eld is typically a laser. Far from being in�nite, continuousplane waves, lasers are usually Gaussian beams, meaning that the intensity of the �eldfalls o� like a Gaussian as one moves radially outward from the central axis of the beam,
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and are often pulsed, meaning they have some temporal envelope and are composed ofmultiple frequencies.In addition, the particles themselves may not be spherical, but rather may possess anellipsoidal or stranger shape. Alternatively, the particles in question may have a muchmore complex structure than the homogenous isotropy normally assumed in Mie scat-tering.If we are to utilize Mie scattering in the real world, we need a way of assessing whatnon-idealities in the observed �elds may be caused by these di�erent factors. Complexgeometries and �elds like those above resist analytical solutions, and must be solved fornumerically.
2 Nonlinear Mie ScatteringAlso of considerable interest is Mie scattering in the nonlinear optical regime. Non-linear optics refers to optical and electromagnetic e�ects generated by source terms whichare related to the electric �eld in a nonlinear manner ( usually proprtional to some powerof the electric �eld strength greater than 1 ) . Contrast this with the usual, linear approxi-mation, where the source term for electromagnetic e�ects, the polarization, is related tothe electric �eld linearly throught the relation PK = �K ( 1 )EK , where �K ( 1 ) is the linear suscepti-bility of the medium in question.One of the most common nonlinear optical e�ects is known as second harmonic gener-ation, where light at frequency ! can, if of su�cient intensity, generate light at frequency2! when propagating through or scattering o� of a dielectric. This harmonic light is gen-erated by a nonlinear polarization source term of the form Pi( 2 ) = � i jk( 2 ) EjEk , where �i jk( 2 ) isthe nonlinear susceptibility tensor. This tensor typically has very small values, and so thisnonlinear e�ect is only evident when the intensity of the light (which is proportional toE 2 ) is quite large, such as in a high-�eld, pulsed laser beam6 .
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A common example of second harmonic generation is the everyday green laser pointer.It is more power e�cient to lase at lower frequencies, and so if we take an infrared laserand send it through a highly nonlinear material, we can produce substantial amounts ofcoherent green light for less of a power expenditure than had we lased in the green part ofthe visible spectrum directly. Almost every green laser pointer you �nd is actually aninfrared diode sent through a nonlinear crystal before being output ( open one up if youdon' t believe me! ) .Second harmonic generation is particularly interesting in the Mie regime due to whatare known as whispering gallery modes. Named after the whispering gallery at St. Paul' sCathedral in London, where a circular chamber can amplify even faint whispers to anaudible level, a whispering gallery mode is a highly resonant optical wave created insidespheres of a precise size. Basically, an electric �eld incident on a dielectric sphere cantotally internally re�ect inside the sphere and travel around the inner surface. If the cir-cumference of the sphere is equal to an integer number of wavelengths, the �eld willremain in phase with itself as it returns to its starting point, and will have a long lifetime(well, nanoseconds, which is relatively long on the scale of optical processes) inside thesphere due to a lack of destructive interference. Essentially, the sphere acts as anextremely e�ective spherical resonating cavity.This can lead to high �eld strengths, and the e�ect is particularly evident in the Mieregime. In the case of second harmonic, since the intensity of second harmonic is quadrati-cally related to the linear intensity, we expect to see very strong contributions to secondharmonic �elds from Mie size particles.However, no exact solution exists for a complete treatment of second harmonic Miescattering. Moreover, second harmonic generation generally involves high intensity, ultra-fast lasers, which are di�cult, if not impossible, to model without numerical methods. Forthe case of nonlinear light scattering, a numerical solution for the �elds is almost certainlynecessary.
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3 Finite Di�erence Time Domain MethodThe aim of my project, then, was to model complex linear Mie phenomena and hope-fully to develop a numerical method for handling nonlinear scattering as well. The methodI chose to attempt to model complex linear and nonlinear Mie phenomena was the �nitedi�erence time domain method. The theory behind this is somewhat involved, so we will�rst treat only the linear case.3. 1 Basic ConceptOne of the most widely used methods for numerically determining electromagnetic�elds is the �nite di�erence time domain method. The basic idea starts with two ofMaxwell' s equations r � EK = � d BKd t ; ( 1 )r � HK = d DKd t + J ;K ( 2)where EK and BK are the electric and magnetic �elds, HK is the �auxiliary �eld� ( no trueconsensus exist on a name for this �eld; some just call it HK ) , DK is the electric displace-ment vector, and JK the current. In a linear dielectric, these quantities are connected bythe constituitive relations DK = �K EK ; ( 3)JK = �K EK ; ( 4)BK = �KHK ; ( 5)where �K ; �K ; and �K are the electric permittivity, conductivity, and magnetic permeabilitytensors, respectively. These describe the response of charges in a dielectric material toapplied electromagnetic �elds.Armed with equations ( 1 ) and ( 2) , we proceed to discretize the space in and aroundour scatterer and express the spatial and temporal derivatives in Maxwell' s equationsusing �nite di�erences. We then split the total �elds into the incident and scattered com-

4 S ection 3



ponents. The reason for this is simple. It is assumed that we can specify the incident �eldand its time derivatives exactly, usually through a closed form expression. Thus, we canseparate it from the �elds that we want, the scattered �elds, and solve for these directly.Once this is done, we perform some algebra to obtain expressions for the individualcomponents of the �elds at time step n + 1 in terms of the incident �eld and the scattered�eld values at earlier time steps. This allows us to simply step forward in time, solving forthe �elds at each time step explicitly. In practice, we evaluate the electric and magnetic�elds alternately at each time step in a method called �leapfrogging�. That is, we solve forthe electric �elds everywhere at time t = nM t , then proceed to use these values to solve forthe magnetic �elds at time t = ( n + 12 ) M t , which are in turn used to solve for the elctric�elds at the next time step, etc. 1 The purpose of this is to allow us to use central di�er-ence approximations to the temporal derivatives, rather than resorting to less accuratebackwards di�erence approximations. A similar spatial staggering of the �elds is used toallow central di�erencing of the curl equations and to ensure that important boundaryconditions on the �elds are satis�ed. To make this more concrete, we will show the deriva-tion of one of the six �eld equations below.3. 2 AssumptionsBefore we do that, however, we make a few simplifying assumptions. The �rst is thethe material is isotropic. This means that the response of the material to one spatial com-ponent of the electric �eld is exactly the same as to the others. Mathematically, thismeans that the permittivity tensor in ( 3) becomes a constant. The reason for this is thato�-diagonal elements in the permittivity tensor result in the mixing of �eld components.That is, all of a sudden our expression for, say, Ex( t = ( n + 1 )M t) would contain termsinvolving not only Ex at time nM t , but also Ey and Ez . This coupling of the di�erent �eldcomponents makes simple iteration over the solution space for each �eld component ateach time step impossible, since changes in one �eld component will a�ect the other �eld
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components at the same location. Thus, o�-diagonal permittivity elements require that wesolve for all the �eld components at a certain time step simultaneously. While this couldin principle be done with a matrix equation, the fact that we must solve for three di�erent�eld components at each point in a 3D space makes this method cumbersome and tricky.Note that we can actually simulate anisotropic media, as long as the permittivity tensorremains diagonal ( i. e. the dielectric responses in the x , y , and z directions may be dif-ferent, but in each case only one component of the electric �eld stimulates a response in agiven direction) .Another assumption is that � � 1 , so that BK = HK , which simpli�es ( 1 ) by reducing thenumber of constants we must keep track of. Most materials have a low magnetic perme-ability with a few rare exceptions ( gadolinium and bismuth, for example) .The �nal assumption is that the medium is dispersionless. That is, we assume that thereponse of the material to an applied �eld is inpedendent of the frequency, and thus allfrequencies propagate throught the medium at the same speed. This is competely untruein general, but as long as we restrict our examinations to small bands of frequencies it is areasonable approximation. Methods exist to handle frequency dependent material parame-ters, but for the time being we will restrict ourselves to this simpler approximation.3. 3 Finite Di�erencing: an exampleLet us begin with ( 2) , and immediately take note of the fact that, since the incident�elds must satisfy the free space equations (where � ! �0 ; the vacuum permittivity, and JKdisappears altogether) , we have, r � HK inc = �0 d EK incd t : ( 6)Combining ( 2) and ( 6) , and moving the temporal derivative of the incident �eld on tothe right side of equation ( 2) . Then, considering only the x component, ( 2) becomesdHy; scattdz � dHz ; scattdy = �x x dEx ; scattd t + ( �x x � �0) dEx ; incd t + �x x(Ex ; inc + Ex ; scatt) : ( 7)
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After approximation of the scattered �eld derivatives the equation beomesHy; scattn+ 12 ( i ; j ; k ) � Hy; scattn+ 12 ( i ; j ; k � 1 )M z � Hz ; scattn+ 12 ( i ; j ; k ) � Hz ; scattn+ 12 ( i ; j � 1 ; k )M y =�x xEx ; scattn ( i ; j ; k ) � Ex ; scattn� 1 ( i ; j ; k )M t + ( �x x � �0) dEx ; incn ( i ; j ; k )d t + �x x(Ex ; incn + Ex ; scattn ) ;( 8)where the superscripts indicate the time step at which the �elds are evaluated, and the ( i ;j ; k ) additions indicate the spatial grid indices at which the �elds are evaluated. Equation( 8) can be solved for Ex ; scattn to get the formula for updating the x-component of the scat-tered �eld at each point in space using only the most recent magnetic �elds and the pre-vious electric �eld values.Earlier the claim was made that the �nite di�erences used were central di�erences, buthere they appear at �rst glance to be backwards di�erences. However, with regards to thetime derivative note that we are in e�ect taking a central di�erence about time t = ( n +12 )M t , with the e�ective time step M t 0 = 12 M t . Thus, we are taking a centered di�erence intime of the electric �elds about the time step of the previously calculated magnetic �elds.This is valid because EK and HK are not just any old vector �elds, but are rather intimatelyconnected by Maxwell' s equations. In a very real sense they are both part of the samephysical electromagnetic �eld. This also sheds light on why we alternate between the eval-uation of the two �elds with each time step. Were we to evaluate both EK and HK at eachpoint in time, we would be forced to �nd EK n using backwards di�erences, or to keep both�elds out to two time steps back, doubling our memory requirement.The claim that the spatial di�erences of HK present in ( 8) are central di�erences is jus-ti�ed by considering the geometry that we use to evaluate our �elds. Though we index the�elds by discretized points, we are not actually evaluating the �elds at each point ( i ; j ; k ) .
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Rather, in each grid cell within our space the components of EK and HK are staggered in anarrangement known as Yee cells3 . In this arrangement, the electric �eld components arelocated on the edges of each grid cell, while the magnetic �eld components are located inthe middle of each face. That is, for a grid point ( i ; j ; k ) , the physical locations of the�eld components are as followsEx( i ; j ; k ) ! ( i + 12 ; j ; k ) Ey( i ; j ; k ) ! ( i ; j + 12 ; k ) Ez( i ; j ; k ) ! ( i ; j ; k + 12 )Hx( i ; j ; k ) ! ( i ; j + 12 ; k ) Hy( i ; j ; k ) ! ( i + 12 ; j ; k + 12 ) Hz( i ; j ; k ) ! ( i + 12 ; j + 12 ; k ) .Notice that, using the following �eld locations that the �nite di�erences ofHy andHz in ( 8) can be considered central di�erences about the point ( i + 12 ; j ; k ) , which isthe point at which Ex( i ; j ; k ) , the �eld component we are evaluating, resides. This spatialinterleaving of the electric and magnetic �elds allows us to make our spatial derivativescentral di�erences as well.The other advantage of the Yee cell arrangment is that, since the components of themagnetic �eld are located on face of the grid cells to which they are normal ( e. g Hy islocated in the middle of a face aligned in the x z plane) , and the components of the elec-tric �eld are located on edges to which they are tangential ( e. g. Ex is located on the edgeparallel to the x-axis) , these �eld locations allow us to ensure the well known boundaryconditions requiring continuity of the normal components of HK and the tangential compo-nents of EK at the boundary surface of the dielectric ( at least to the extent that it is accu-rately represented by cubic cells) 3 .
3. 4 Stability and Accuracy IssuesThe primary factor in determining how accurate our solution will be is our grid size.Namely, we make some errors in approximating non-cubic shapes, such as a sphere, usingcubic cells ( FDTD can be formulated in terms of spherical coordinates, but its much more
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cumbersome) . The location of the boundaries necessarily get smeared out, as we assigndielectric properties on a cell-by-cell basis, thus overlooking any �ne structure to theboundary on the scale of less than the size of a grid cell.In addition, choosing the grid cell size determines how many samples per wavelengthwe are getting of the electric and magnetic �elds. A general rule of thumb is that we wantthe grid spacing less than or eual to �1 0 , where � is the smallest wavelength of interest inour problem1 . This ensures adequate sampling of the �eld to prevent aliasing e�ects, whilenot requiring too much computational time to iterate over the solution space.The stability condition for our time step is simply the three-dimensional formulation ofthe well-known Courant stability condition, requiringM t � 1c � 1M x � 2 + � 1M y � 2 + � 1M z � 2r ; ( 9)where c is the speed of light in a vacuum.3. 5 Absorbing boundariesThe boundary of our solution space presents a problem. In reality, the scattered �eldswould propagate out to in�nity. This is the de�nition of radiation, in fact: light which car-ries energy out to in�nity. However, because we cannot solve in an in�nitely large solutionspace, we necessarily impose an arti�cial boundary around our scatterer. If we are notcareful this will result in re�ections of the scattered �elds back into the space, which willseverely impact the accuracy of our solution.One method to circumvent this is what is known as an �absorbing boundary condi-tion�, �rst developed by Mur4. Without going into too much detail, the general idea is to�nd the value of a �eld component at some point x on the boundary by interpolatingbetween the previous time step' s �eld value at x and the current and previous �eld valuesjust inside the solution space near x , say at some point y .
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Essentially, by looking at the �eld values just inside the boundary at y , both now andpreviously in time, and by using the known time and distance intervals between thepoints, we can approximate how the �elds that were at y have now propagated outtowards x . By using this in conjunction with an approximation for how the �elds thatwere at x have propagated out towards in�nity, we can �nd a new value for the �elds at xwhich properly simulates the outgoing �elds. This can be done to higher order ( i . e.looking back multiple steps in time and looking multiple steps inward into the solutionspace) , but in practice �rst or second order Mur boundary conditions are usually su�cientfor most applications. One of the �rst-order Mur conditions, that for computing Ez on thex = 0 face of the boundary, is presented here for concretenessEzn� 0 ; j ; k + 12 � = Ezn� 1� 1 ; j ; k + 12 � + cM t � M xcM t + M x� Ezn� 1 ; j ; k + 12 �� Ezn� 1� 0 ; j ; k + 12 � � : ( 1 0)The outward travelling �elds will become more and more like pure transverse waves ( i. ethe electric and magnetic �eld vectors are perpendicular to the direction of propagation) ,as they move away from the scatterer, and their progress towards the boundary will bemore accurately modeled. Thus, we ideally want many grid cells between the boundary ofthe scatterer and the solution space boundary. In practice 1 0 cells on all sides is generallysu�cient for simple scattering from spheres1 .
3. 6 Far Zone TranformationIn practice the solution space only extends a small physical distance beyond the scat-terer ( e. g. 1 0 grid cells for optical frequencies is on the order of �m) , and so to translatethe �elds into what we might actually see requires tranforming the near �elds into the cor-responding �elds in the far zone. We accomplish this by approximating a surface integral
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of the tangential �elds over the boundary of our solution space at each time step5 . Thiscan be transformed into the far zone �elds by the formulaE�far zone = ��W� � U� ; ( 1 1 )E�far zone = ��W� + U� ; ( 1 2)where � = 1�0 c is a constant known as the impedance of free space, and the vector �eldsW and UK are de�ned asWK ( t) = 14 � c dd t� ZS dA JK ( t + ( rK 0 � r̂ ) / c) � ; ( 1 3)UK ( t) = 14 � c dd t� ZS dA MK ( t + ( rK 0 � r̂ ) / c) � : ( 1 4)The integration here is over a suitable surface which completely encloses the scatteringobjects of our solution space, and the �elds inside the integrals are just the tangentialcomponents of the electromagnetic �elds, JK = n̂ � HK ; MK = �n̂ � EK , where n̂ is the surfacenormal at the vector. The vector rK 0 is the vector from a chosen reference point ( usuallythe center of the space) to the point of integration in the surface, while r̂ is the unitvector from this reference point to the far zone observation point for whihc we are calcu-lating the �elds.To get the surface integral, we approximate the appropriate �eld as constant over eachcell face, with a value equal to the average of the surrounding relevant �elds, then mul-tiply this spatial average by the area of the cell face. Note that since the magnetic �eldstangential to a surface do not actually lie on the surface in a Yee cell geometry, we mustget the average at the center of the face by using �eld values outside the integration sur-face. For this reason, we set the faces of our integration surface one cell inside theboundary of our solution space on all sides.The time derivative is approximated by a �nite di�erence method, and from these wecan �gure out at which time steps will a particular �eld component ( evaluated at a partic-
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ular time) will contribute to the surface integral. Any particular �eld component at anyparticular time step will contribute mutiple times to the surface integral, over a timeinterval of 2M t , due to its appearance in two �nite di�erence equations.For example, evaluating the contribution of Ex to Uz at time ( n + 12 )M t involves a �nitedi�erence proportional to Exn+1 � Exn , while the contribution at time ( n � 12 )M t will be pro-prtional to Exn � Exn� 1 . Thus, Exn has multiple contributions to Uz at di�erent times. Inpractice we handle this by keeping an array of all possible time steps of interest forWK and UK . At each time step, after calculating the �elds within the boundary, we add thecontribution for each �eld element to whatever time steps of WK and UK it a�ects, keeping arunning total for each time step of all the contributions.3. 7 Advantages of the FDTD MethodA primary advantage of this method is that it solves for the time dependent electro-magnetic �elds directly, rather than decomposing the incident �eld into di�erent fre-quency components, solving for the radiated �elds at each frequency, and then recon-structing the scattered �elds from the individual scattered frequencies, as is frequentlydone in electrodynamical problems. Though the this technique can be powerful, there aremany situations where the incident �elds cannot be easily speci�ed in terms of its con-stituent frequency components, such as a laser with a Gaussian intensity pro�le as men-tioned above, or where this method of spectral decomposition can be cumbersome due toa large number of frequency components, such as in an ultrafast laser pulse.Another advantage to this method is that it allows for the modeling of arbitrarygeometries, the accuracy being limited only by one' s resolution in terms of grid spacing.In the case of Mie scattering, this allows realtively straightforward modeling of multiplespheres in close proximity, spheres on a dielectric substrate, inhomogeneous spheres( spheres which have multiple interior regions with di�erent dielectric properties) , etc.
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4 ResultsThe FDTD scheme presented above was coded up in C++. To evaluate the validity ofthe method and the correctness of the code, as simple test case was chosen: ordinary Miescattering of a single frequency plane wave by a single dielectric sphere in vacuum. Thisprovides an excellent benchmark, as we have a readily available exact theory againstwhich to compare. The Mie theory calculations used to check the results were provided byanother piece of code to implement the exact solution ( the details of which are not rele-vant here; the interested reader is directed to Ref. 2) , which has been thoroughly checkedagainst other implementations of Mie theory and data from Prof. Tom Donnelly' s labora-tory.The test case was an 800 nm plane wave incident upon a 1 �m sphere of water ( diel-tric constant of � = 1 . 755 �0 ( the conductivity � is assumed negligible) . Observation pointsin the far �eld were chosen to be evenly spaced between � = 0 and � = � at intervals of �1 2 .The exact solution using Mie theory is displayed in Fig. 1 .

Figure 1 . Plot of intensity vs. angle ( normalized to 1 at peak intensity) for 800 nm incidentplane wave, 1 �m radius spheres of water. Note the dominant forward scattering, thehallmark of Mie scattering.
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Using the FDTD model proposed above, we have a grid spacing of 0. 08 �m and atime step of about 0. 1 5 fs ( fs = 1 0� 1 5 s) .To check our model, we take the square of the numerically determined far zone �elds(which is proportional to the intensity) after they have reached a steady state value ( asthey should when illuminated by a constant plane wave) . Ideally, the values should thencorrespond exactly to the corresponding points on the plot in Fig. 1 . The results areshown in Fig. 2

Figure 2. The diamond points represent the �elds at the observation points ofthe model. Notice that we have excellent numerical agreement until we getto the far backwards angles, at which point the numerical solution deviatessubstantially from Mie theory.Generally the numerical model perfectly replicates the predictions of Mie theory.However, there is substantial numerical disagreement in the backscatter. To try and dis-cern whether this was an issue with the actual FDTD implementation in the sphere, or anerror in the implementation of the far zone transform in the rear direction, I plotted the�elds inside the sphere for the �rst 300 time steps ( out of a total of 1 000) , shown in Fig. 3
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Figure 3. Electric �eld inside the sphere ( x-component)Looking at the above plot we see that over the course of roughly 80time steps ( 8 minor ticks on the x-axis, or � 1 2 fs) we have about 4 oscilla-tions. 4 periods in about 1 2 fs equals a frequency of 3. 33 � 1 01 4 Hz, corre-sponding to about 900 nm. This is a rough estimate, of course, but it seemslike the wavelength is mostly on target inside the sphere. Even if it weren' t900 nm is still well within the Mie regime for this size of sphere, so weshouldn' t see backscatter. Thus, my guess is that something in the far-zonetransformation code is o�. Unfortunately, it took forever to get all the kinksworked out of the code (well, most of them, apparently) , so I have no time toinvestigate this further. Sorry, Prof. Yong. I suck, big time. . .
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