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1 Linear Mie Scattering

Mie scattering refers to the scattering of light from spheres with a radius comparable to
the wavelength of the light. In the linear case, simple Mie scattering is well understood
and widely utilized for many applications, including the sizing of small particles, studies of
atmospheric optical effects, and describing the nature of interstellar dust by examining the

propagation of starlight through dust clouds?.

However, classical Mie theory, though it yields an exact series solution for the scat-
tered field, makes some assumptions which are not representative of real scattering situa-
tions. In particular, the theory is derived under the assumption of a single wave sitting
isolated in free space, illuminated by a single frequency plane wave. In a real laboratory
situation, the particles in question are typically delivered in some sort of aerosol system (if
they are liquid) or sit in an array on some dielectric substrate (if they are solid). The
presence of additional dielectric materials in the vicinity of the sphere can potentially alter

the scattering pattern in ways that ordinary Mie theory cannot account for.

Moreover, our incident field is typically a laser. Far from being infinite, continuous
plane waves, lasers are usually Gaussian beams, meaning that the intensity of the field

falls off like a Gaussian as one moves radially outward from the central axis of the beam,
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and are often pulsed, meaning they have some temporal envelope and are composed of
multiple frequencies.

In addition, the particles themselves may not be spherical, but rather may possess an
ellipsoidal or stranger shape. Alternatively, the particles in question may have a much
more complex structure than the homogenous isotropy normally assumed in Mie scat-
tering.

If we are to utilize Mie scattering in the real world, we need a way of assessing what
non-idealities in the observed fields may be caused by these different factors. Complex
geometries and fields like those above resist analytical solutions, and must be solved for

numerically.

2 Nonlinear Mie Scattering

Also of considerable interest is Mie scattering in the nonlinear optical regime. Non-
linear optics refers to optical and electromagnetic effects generated by source terms which
are related to the electric field in a nonlinear manner (usually proprtional to some power
of the electric field strength greater than 1). Contrast this with the usual, linear approxi-
mation, where the source term for electromagnetic effects, the polarization, is related to
the electric field linearly throught the relation P = Y(WE, where Y% is the linear suscepti-
bility of the medium in question.

One of the most common nonlinear optical effects is known as second harmonic gener-
ation, where light at frequency w can, if of sufficient intensity, generate light at frequency
2w when propagating through or scattering off of a dielectric. This harmonic light is gen-
erated by a nonlinear polarization source term of the form PZ@) = Xg}gEjEm where XE?{: is
the nonlinear susceptibility tensor. This tensor typically has very small values, and so this

nonlinear effect is only evident when the intensity of the light (which is proportional to

E?) is quite large, such as in a high-field, pulsed laser beam®.
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A common example of second harmonic generation is the everyday green laser pointer.
It is more power efficient to lase at lower frequencies, and so if we take an infrared laser
and send it through a highly nonlinear material, we can produce substantial amounts of
coherent green light for less of a power expenditure than had we lased in the green part of
the visible spectrum directly. Almost every green laser pointer you find is actually an
infrared diode sent through a nonlinear crystal before being output (open one up if you

don’t believe me!).

Second harmonic generation is particularly interesting in the Mie regime due to what
are known as whispering gallery modes. Named after the whispering gallery at St. Paul’s
Cathedral in London, where a circular chamber can amplify even faint whispers to an
audible level, a whispering gallery mode is a highly resonant optical wave created inside
spheres of a precise size. Basically, an electric field incident on a dielectric sphere can
totally internally reflect inside the sphere and travel around the inner surface. If the cir-
cumference of the sphere is equal to an integer number of wavelengths, the field will
remain in phase with itself as it returns to its starting point, and will have a long lifetime
(well, nanoseconds, which is relatively long on the scale of optical processes) inside the
sphere due to a lack of destructive interference. Essentially, the sphere acts as an

extremely effective spherical resonating cavity.

This can lead to high field strengths, and the effect is particularly evident in the Mie
regime. In the case of second harmonic, since the intensity of second harmonic is quadrati-
cally related to the linear intensity, we expect to see very strong contributions to second

harmonic fields from Mie size particles.

However, no exact solution exists for a complete treatment of second harmonic Mie
scattering. Moreover, second harmonic generation generally involves high intensity, ultra-
fast lasers, which are difficult, if not impossible, to model without numerical methods. For
the case of nonlinear light scattering, a numerical solution for the fields is almost certainly

necessary.
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3 Finite Difference Time Domain Method

The aim of my project, then, was to model complex linear Mie phenomena and hope-
fully to develop a numerical method for handling nonlinear scattering as well. The method
I chose to attempt to model complex linear and nonlinear Mie phenomena was the finite
difference time domain method. The theory behind this is somewhat involved, so we will

first treat only the linear case.

3.1 Basic Concept

One of the most widely used methods for numerically determining electromagnetic
fields is the finite difference time domain method. The basic idea starts with two of

Maxwell’s equations

- dB
VXE—*W, (1)
. dD -

where E and B are the electric and magnetic fields, H is the “auxiliary field” (no true
consensus exist on a name for this field; some just call it H ), D is the electric displace-
ment vector, and J the current. In a linear dielectric, these quantities are connected by

the constituitive relations

D=¢E, (3)
J=GE, (4)
B =jiH, (5)

where €, ¢, and [ are the electric permittivity, conductivity, and magnetic permeability
tensors, respectively. These describe the response of charges in a dielectric material to
applied electromagnetic fields.

Armed with equations (1) and (2), we proceed to discretize the space in and around
our scatterer and express the spatial and temporal derivatives in Maxwell’s equations

using finite differences. We then split the total fields into the incident and scattered com-
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ponents. The reason for this is simple. It is assumed that we can specify the incident field
and its time derivatives exactly, usually through a closed form expression. Thus, we can
separate it from the fields that we want, the scattered fields, and solve for these directly.
Once this is done, we perform some algebra to obtain expressions for the individual
components of the fields at time step n + 1 in terms of the incident field and the scattered
field values at earlier time steps. This allows us to simply step forward in time, solving for
the fields at each time step explicitly. In practice, we evaluate the electric and magnetic
fields alternately at each time step in a method called “leapfrogging”. That is, we solve for
the electric fields everywhere at time t =nAt, then proceed to use these values to solve for
the magnetic fields at time ¢t = (n + %) At, which are in turn used to solve for the elctric
fields at the next time step, etc.! The purpose of this is to allow us to use central differ-
ence approximations to the temporal derivatives, rather than resorting to less accurate
backwards difference approximations. A similar spatial staggering of the fields is used to
allow central differencing of the curl equations and to ensure that important boundary
conditions on the fields are satisfied. To make this more concrete, we will show the deriva-

tion of one of the six field equations below.

3.2 Assumptions

Before we do that, however, we make a few simplifying assumptions. The first is the
the material is isotropic. This means that the response of the material to one spatial com-
ponent of the electric field is exactly the same as to the others. Mathematically, this
means that the permittivity tensor in (3) becomes a constant. The reason for this is that
off-diagonal elements in the permittivity tensor result in the mixing of field components.
That is, all of a sudden our expression for, say, E.(t = (n + 1)At) would contain terms
involving not only E, at time nAt, but also F, and E,. This coupling of the different field
components makes simple iteration over the solution space for each field component at

each time step impossible, since changes in one field component will affect the other field
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components at the same location. Thus, off-diagonal permittivity elements require that we
solve for all the field components at a certain time step simultaneously. While this could
in principle be done with a matrix equation, the fact that we must solve for three different
field components at each point in a 3D space makes this method cumbersome and tricky.
Note that we can actually simulate anisotropic media, as long as the permittivity tensor
remains diagonal (i.e. the dielectric responses in the z, y, and z directions may be dif-
ferent, but in each case only one component of the electric field stimulates a response in a
given direction).

Another assumption is that g~ 1, so that B = H, which simplifies (1) by reducing the
number of constants we must keep track of. Most materials have a low magnetic perme-
ability with a few rare exceptions (gadolinium and bismuth, for example).

The final assumption is that the medium is dispersionless. That is, we assume that the
reponse of the material to an applied field is inpedendent of the frequency, and thus all
frequencies propagate throught the medium at the same speed. This is competely untrue
in general, but as long as we restrict our examinations to small bands of frequencies it is a
reasonable approximation. Methods exist to handle frequency dependent material parame-

ters, but for the time being we will restrict ourselves to this simpler approximation.

3.3 Finite Differencing: an example

Let us begin with (2), and immediately take note of the fact that, since the incident
fields must satisfy the free space equations (where € — ¢y, the vacuum permittivity, and J

disappears altogether), we have,

Vx A = et (6)

Combining (2) and (6), and moving the temporal derivative of the incident field on to

the right side of equation (2). Then, considering only the z component, (2) becomes

dHy,scatt - de,scatt o dE:r,scatt dE:c,inc

1 dy =€y dt dt + U:c:c(E:r,inc + E:c,scatt)- (7)

+ (E:r:r - EO)
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After approximation of the scattered field derivatives the equation beomes

1 1 1 1

n+s oo n+s o .. ntso. . n+soo. .
Hy,sc%xtt(zv Js k) - Hy,sc?xtt(za jak - 1) . Hz,sc?xtt(za jak) - Hz,sczzxtt(lv J— 17 k) _
Az Ay
B2 wcan(i, . k) — Epibali gk dEDucli, . k
€xx w7scatt(z,]’ ) 7C&tt(z ] ) + (ﬁzx - 60) . C(Z’]’ ) + O-II(E:?,iHC + Eg,scatt)a

At dt

(8)
where the superscripts indicate the time step at which the fields are evaluated, and the (i,
7, k) additions indicate the spatial grid indices at which the fields are evaluated. Equation
(8) can be solved for B s, to get the formula for updating the z-component of the scat-
tered field at each point in space using only the most recent magnetic fields and the pre-

vious electric field values.

Earlier the claim was made that the finite differences used were central differences, but
here they appear at first glance to be backwards differences. However, with regards to the
time derivative note that we are in effect taking a central difference about time ¢t = (n +
%)At, with the effective time step At'= %At. Thus, we are taking a centered difference in
time of the electric fields about the time step of the previously calculated magnetic fields.
This is valid because E and H are not just any old vector fields, but are rather intimately
connected by Maxwell’s equations. In a very real sense they are both part of the same
physical electromagnetic field. This also sheds light on why we alternate between the eval-
uation of the two fields with each time step. Were we to evaluate both E and H at each
point in time, we would be forced to find E" using backwards differences, or to keep both

fields out to two time steps back, doubling our memory requirement.

The claim that the spatial differences of H present in (8) are central differences is jus-
tified by considering the geometry that we use to evaluate our fields. Though we index the

fields by discretized points, we are not actually evaluating the fields at each point (i, j, k).
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Rather, in each grid cell within our space the components of E and H are staggered in an
arrangement known as Yee cells®. In this arrangement, the electric field components are
located on the edges of each grid cell, while the magnetic field components are located in
the middle of each face. That is, for a grid point (¢, j, k), the physical locations of the

field components are as follows

Eo(i,j. k)= (i+5.5.k)  By(i,j. k)= (i, j+3.k)  E:i,j.k)— (i, k+3)
Hy(i,j.k) = (i, j+3.k) Hy(i,j. k)= (i+3.4,k+5) H6,4,k)— (i+3,5+75.k).

Notice that, using the following field locations that the finite differences of
Hyand H,in (8) can be considered central differences about the point (i + %, J, k), which is
the point at which E,(i, j, k), the field component we are evaluating, resides. This spatial
interleaving of the electric and magnetic fields allows us to make our spatial derivatives

central differences as well.

The other advantage of the Yee cell arrangment is that, since the components of the
magnetic field are located on face of the grid cells to which they are normal (e.g H, is
located in the middle of a face aligned in the zz plane), and the components of the elec-
tric field are located on edges to which they are tangential (e.g. F, is located on the edge
parallel to the z-axis), these field locations allow us to ensure the well known boundary
conditions requiring continuity of the normal components of H and the tangential compo-
nents of E at the boundary surface of the dielectric (at least to the extent that it is accu-

rately represented by cubic cells)?.

3.4 Stability and Accuracy Issues

The primary factor in determining how accurate our solution will be is our grid size.
Namely, we make some errors in approximating non-cubic shapes, such as a sphere, using

cubic cells (FDTD can be formulated in terms of spherical coordinates, but its much more
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cumbersome). The location of the boundaries necessarily get smeared out, as we assign
dielectric properties on a cell-by-cell basis, thus overlooking any fine structure to the

boundary on the scale of less than the size of a grid cell.

In addition, choosing the grid cell size determines how many samples per wavelength
we are getting of the electric and magnetic fields. A general rule of thumb is that we want

A

the grid spacing less than or eual to 7,

where A is the smallest wavelength of interest in
our problem!. This ensures adequate sampling of the field to prevent aliasing effects, while

not requiring too much computational time to iterate over the solution space.

The stability condition for our time step is simply the three-dimensional formulation of

the well-known Courant stability condition, requiring

9)

where c is the speed of light in a vacuum.

3.5 Absorbing boundaries

The boundary of our solution space presents a problem. In reality, the scattered fields
would propagate out to infinity. This is the definition of radiation, in fact: light which car-
ries energy out to infinity. However, because we cannot solve in an infinitely large solution
space, we necessarily impose an artificial boundary around our scatterer. If we are not
careful this will result in reflections of the scattered fields back into the space, which will

severely impact the accuracy of our solution.

One method to circumvent this is what is known as an “absorbing boundary condi-
tion”, first developed by Mur?. Without going into too much detail, the general idea is to
find the value of a field component at some point x on the boundary by interpolating
between the previous time step’s field value at z and the current and previous field values

just inside the solution space near x, say at some point y.
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Essentially, by looking at the field values just inside the boundary at y, both now and
previously in time, and by using the known time and distance intervals between the
points, we can approximate how the fields that were at y have now propagated out
towards z. By using this in conjunction with an approximation for how the fields that
were at x have propagated out towards infinity, we can find a new value for the fields at «
which properly simulates the outgoing fields. This can be done to higher order (i.e.
looking back multiple steps in time and looking multiple steps inward into the solution
space), but in practice first or second order Mur boundary conditions are usually sufficient
for most applications. One of the first-order Mur conditions, that for computing E. on the

x =0 face of the boundary, is presented here for concreteness
1 1 cAt — Aw . 1
E? k+= ) =E" Y 1,5, k+= —EN 1,j,k+=
Z(O,J, +2> p ( E +2>+0At+m< z( 75 +2)

— Egl(o,j,m%)). (10)

The outward travelling fields will become more and more like pure transverse waves (i.e
the electric and magnetic field vectors are perpendicular to the direction of propagation),
as they move away from the scatterer, and their progress towards the boundary will be
more accurately modeled. Thus, we ideally want many grid cells between the boundary of
the scatterer and the solution space boundary. In practice 10 cells on all sides is generally

sufficient for simple scattering from spheres!.

3.6 Far Zone Tranformation

In practice the solution space only extends a small physical distance beyond the scat-
terer (e.g. 10 grid cells for optical frequencies is on the order of pm), and so to translate
the fields into what we might actually see requires tranforming the near fields into the cor-

responding fields in the far zone. We accomplish this by approximating a surface integral
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of the tangential fields over the boundary of our solution space at each time step®. This

can be transformed into the far zone fields by the formula

Egar zone __ *77W9 o U¢7 (11)
Egreore =—nW+ Uy, (12)

where 7 = EOLC is a constant known as the impedance of free space, and the vector fields
W and U are defined as

W(t):471rc%<LdA f(t+(F’-f)/c)), (13)

0(t) =1 %(/Scm M(H(F'-m/c)). (14)

™C

The integration here is over a suitable surface which completely encloses the scattering
objects of our solution space, and the fields inside the integrals are just the tangential
components of the electromagnetic fields, J=nxH,M=-n x E, where 11 is the surface
normal at the vector. The vector 7/ is the vector from a chosen reference point (usually
the center of the space) to the point of integration in the surface, while 7 is the unit
vector from this reference point to the far zone observation point for whihc we are calcu-
lating the fields.

To get the surface integral, we approximate the appropriate field as constant over each
cell face, with a value equal to the average of the surrounding relevant fields, then mul-
tiply this spatial average by the area of the cell face. Note that since the magnetic fields
tangential to a surface do not actually lie on the surface in a Yee cell geometry, we must
get the average at the center of the face by using field values outside the integration sur-
face. For this reason, we set the faces of our integration surface one cell inside the

boundary of our solution space on all sides.

The time derivative is approximated by a finite difference method, and from these we

can figure out at which time steps will a particular field component (evaluated at a partic-
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ular time) will contribute to the surface integral. Any particular field component at any
particular time step will contribute mutiple times to the surface integral, over a time

interval of 2At, due to its appearance in two finite difference equations.

For example, evaluating the contribution of E, to U, at time (n + %)At involves a finite
difference proportional to E7** — E" while the contribution at time (n — %)At will be pro-
prtional to E? — E" ! Thus, E? has multiple contributions to U. at different times. In
practice we handle this by keeping an array of all possible time steps of interest for
W and U. At each time step, after calculating the fields within the boundary, we add the
contribution for each field element to whatever time steps of W and U it affects, keeping a

running total for each time step of all the contributions.

3.7 Advantages of the FDTD Method

A primary advantage of this method is that it solves for the time dependent electro-
magnetic fields directly, rather than decomposing the incident field into different fre-
quency components, solving for the radiated fields at each frequency, and then recon-
structing the scattered fields from the individual scattered frequencies, as is frequently
done in electrodynamical problems. Though the this technique can be powerful, there are
many situations where the incident fields cannot be easily specified in terms of its con-
stituent frequency components, such as a laser with a Gaussian intensity profile as men-
tioned above, or where this method of spectral decomposition can be cumbersome due to

a large number of frequency components, such as in an ultrafast laser pulse.

Another advantage to this method is that it allows for the modeling of arbitrary
geometries, the accuracy being limited only by one’s resolution in terms of grid spacing.
In the case of Mie scattering, this allows realtively straightforward modeling of multiple
spheres in close proximity, spheres on a dielectric substrate, inhomogeneous spheres

(spheres which have multiple interior regions with different dielectric properties), etc.
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4 Results

The FDTD scheme presented above was coded up in C++. To evaluate the validity of
the method and the correctness of the code, as simple test case was chosen: ordinary Mie
scattering of a single frequency plane wave by a single dielectric sphere in vacuum. This
provides an excellent benchmark, as we have a readily available exact theory against
which to compare. The Mie theory calculations used to check the results were provided by
another piece of code to implement the exact solution (the details of which are not rele-
vant here; the interested reader is directed to Ref. 2), which has been thoroughly checked
against other implementations of Mie theory and data from Prof. Tom Donnelly’s labora-
tory.

The test case was an 800 nm plane wave incident upon a 1 pum sphere of water (diel-
tric constant of € = 1.755 ¢y (the conductivity o is assumed negligible). Observation points
in the far field were chosen to be evenly spaced between 6 =0 and € = 7 at intervals of %

The exact solution using Mie theory is displayed in Fig. 1.

Worksheet

(=] o o (=]
in 9 o e ¢
III|III|IIIIIIIIIIIIIII|III|III|III|IIII

e
)

Intensity (a.u.)
o o o
[N T

@
o

[=]

100
Angle (degrees)
Fri May 2 14:56:01 2008

Figure 1. Plot of intensity vs. angle (normalized to 1 at peak intensity) for 800 nm incident
plane wave, 1 wm radius spheres of water. Note the dominant forward scattering, the

hallmark of Mie scattering.
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Using the FDTD model proposed above, we have a grid spacing of 0.08 um and a

time step of about 0.15 fs (fs = 10" s) .

To check our model, we take the square of the numerically determined far zone fields
(which is proportional to the intensity) after they have reached a steady state value (as
they should when illuminated by a constant plane wave). Ideally, the values should then
correspond exactly to the corresponding points on the plot in Fig. 1. The results are
shown in Fig. 2
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Figure 2. The diamond points represent the fields at the observation points of
the model. Notice that we have excellent numerical agreement until we get
to the far backwards angles, at which point the numerical solution deviates

substantially from Mie theory.

Generally the numerical model perfectly replicates the predictions of Mie theory.
However, there is substantial numerical disagreement in the backscatter. To try and dis-
cern whether this was an issue with the actual FDTD implementation in the sphere, or an
error in the implementation of the far zone transform in the rear direction, I plotted the

fields inside the sphere for the first 300 time steps (out of a total of 1000), shown in Fig. 3
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Figure 3. Electric field inside the sphere (x-component)

Looking at the above plot we see that over the course of roughly 80
time steps (8 minor ticks on the x-axis, or ~ 12fs) we have about 4 oscilla-
tions. 4 periods in about 12 fs equals a frequency of 3.33 x 10 Hz, corre-
sponding to about 900 nm. This is a rough estimate, of course, but it seems
like the wavelength is mostly on target inside the sphere. Even if it weren’t
900 nm is still well within the Mie regime for this size of sphere, so we
shouldn’t see backscatter. Thus, my guess is that something in the far-zone
transformation code is off. Unfortunately, it took forever to get all the kinks
worked out of the code (well, most of them, apparently), so I have no time to
investigate this further. Sorry, Prof. Yong. I suck, big time...
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