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Second Harmonic Generation

Incident fields at frequency ω, if of sufficient intensity, Incident fields at frequency ω, if of sufficient intensity, 
can generate scattered fields at 2ω.
A common example is green laser pointers
Source term for radiation is the second-order 
polarization, with the dominant contribution being of 
h  fthe form:
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Nonlinear Maxwell’s Equations
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FDTD Method

Basic prescription:as c p esc pt o :
Discretize space and time
Express temporal and spatial derivatives in the Maxwell curl 

i   fi i  diffequations as finite differences
Split fields into scattered and incident
Rearrange equations to get scattered fields at time t = (n+1)Δt ea a ge equat o s to get scatte ed e ds at t e t  ( + ) t 
in terms of earlier scattered fields and incident fields.
Solve for fields in solution space for each time step, alternating 
between evaluating E and H  and store resultsbetween evaluating E and H, and store results.
Handle boundary fields seperately at each time step



Advantages of FDTD

Easy to simulate arbitrary scattering geometries Easy to simulate arbitrary scattering geometries 
(w/ staircasing error) and inhomogeneous 
media.
Easy to simulate any time dependent incident 
field with an analytical expression (e.g. laser field with an analytical expression (e.g. laser 
pulse which is Gaussian in time and/or spatial 
intensity)y)
For multiple frequency fields, we can solve for 
the whole field at once, instead of superposing , p p g
individual frequency solutions



Assumptions

Medium is linearly isotropic (or diagonally Medium is linearly isotropic (or diagonally 
anisotropic)
Medium is nonmagnetic (i e H = B)Medium is nonmagnetic (i.e H = B)
No dispersion (dielectric response is equal for all 
frequencies)frequencies)



Example (linear case)
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Stability Issues

Rule of thumb for spatial discretization size is ~λ/10 Rule of thumb for spatial discreti ation si e is λ/10 
for highest frequency of interest (and no bigger than 
λ/4)
Need multiple samples per wavelength, also smaller grid 
spacing minimizes “grid dispersion”
F  i  i   C  di i  i  3DFor time spacing, use Courant condition in 3D:
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Boundary Issues

In real-life, the scattered fields propagate out to In real life, the scattered fields propagate out to 
infinity, but we necessarily truncate our solution 
spacep
Need to simulate boundaries that absorb the 
outgoing waves to minimize reflection errorsoutgoing waves to minimize reflection errors
Popular scheme is the Mur boundary condition, 
which estimates the fields at the boundary by which estimates the fields at the boundary by 
interpolating past boundary fields and interior 
fields



Far Zone Scattering

Approximate surface integral of tangential fields Approximate surface integral of tangential fields 
over the boundary at each time step
Relate these to transverse radiation fields far Relate these to transverse radiation fields far 
away from the scatterer



Nonlinear Problem

The presence of the nonlinear polarization’s The presence of the nonlinear polarization s 
time derivative gives us two unknowns at time 
step n+1 with only one equationp y q
For a single incident frequency, the time 
derivative just becomes i2ω times the nonlinear derivative just becomes i2ω times the nonlinear 
polarization at time step n


