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1 Introduction

The basic techniques of solving elementary partial differential equations (PDEs)
in Rn are readily available in the literature, and are even taught in undergrad-
uate courses. Often times, however, complex PDEs have no known analytic
solution. Hence, a great deal of numerical techniques have been developed
to deal with solving complex problems involving PDEs. The majority of
these techniques apply to PDEs that are posed in a Cartesian coordinate
system. Often times in math, science, and engineering, however, it is neces-
sary to solve PDEs on surfaces other than the typical Rn domain. This area
is relatively less studied, and until recently, even the simplest examples have
required very complex techniques.

In this paper we will numerically solve the heat equation:

ut = k∆u (1)

on the unit circle. We will use the circle as a simple example of some of
the complications that arise from solving PDEs defined on non-Cartesian
domains. We will be particularly interested in using the closest point method
for solving the heat equation on the circle. The closest point method is a
technique that allows one to solve PDEs on surfaces that are embedded in
Rn by making use of the Cartesian structure of the ambient Euclidean space.
Although we are using this technique exclusively for the heat equation on
the circle, the closest point method can also be used with more sophisticated
PDEs and on more complex surfaces (see for example: [1], [4], [5], [7], or
[11]).

2 Posing the Problem: Initial Data on the

Unit Circle

As mentioned above, the primary focus of this paper is to numerically solve
the heat equation on the circle. In particular, we will focus our attention on



the unit circle. In terms of polar coordinates, we specify the following initial
condition on the unit circle:

u(θ, 0) = sin θ 0 ≤ θ ≤ 2π. (2)

In order to get a better feel for what the initial condition looks like, we
have included a 3-D plot of it below. We are interested in how the given heat
distribution diffuses through time. That is, we interested in finding a solution
to the heat equation with this given initial distribution. We denote such a
solution by u(θ, t). In the section that follows we will derive an analytic
solution of u(θ, t) which governs how the distribution u(θ, 0) = sin θ diffuses
over the unit circle through time. Following this, we will develop numerical
techniques for solving the same problem, and compare our results with the
analytic solution.

Figure 1: Initial condition for the heat equation on the unit circle. The initial
condition, u(θ, 0) = sin θ, is used throughout the paper. In the plot above, θ
is measured with respect to the center of the blue region. Blue represent an
elevation of -1, while red represents an elevation of 1.



3 Analytic Solution of the Heat Equation on

a Circle

We will now present an analytic solution of (1) subject to (2) so that we may
compare our numerical results to an actual solution. Moreover, this will help
us understand the problem at hand more concretely. We begin by stating
the heat equation in polar coordinates by making the substitution:

x = r cos θ

y = r sin θ

where r is the radius of the circle and 0 ≤ θ ≤ 2π. Under this transformation,
the Laplace operator is expressed as:

∆u = urr +
1

r
ur +

1

r2
uθθ. (3)

In our case, we are dealing with a circle of constant radius so that (3) becomes
∆u = 1

r2
uθθ. Moreover, we are concerned with the unit circle, thus in polar

form we are interested in solving:

ut = uθθ, t ≥ 0, 0 ≤ θ ≤ 2π (4)

u(θ, 0) = sin θ 0 ≤ θ ≤ 2π, (5)

By applying separation of variables, we find that the solution of (4)-(5) is
given by:

u(θ, t) = e−t sin θ.

Rather than giving a detailed derivation of this formula here, the reader is
encouraged to see [4] or [6] for a derivation. It is straightforward to verify
that u(θ, t) satisfies (4)-(5). A graphical representation of u(θ, t) is shown in
Figure 2 below. Notice, in particular, that the solution converges to u(θ, t) =
0 as t increases.

It is useful to have an analytic solution of the (4)-(5) so that we can
compare our numerical calculations to the exact solution. We now turn our
attention to solving this problem numerically, for which we develop some
theory.
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Figure 2: Graphical representation of the solution u(θ, t) = e−t sin θ, where
θ ∈ [0, 2π] and time t ∈ [0, 3]. Notice that as time progresses, u(θ, t) is
damped and eventually approaches u(θ, t) = 0.

4 The Closest Point Method

We will now present the closest point method which we use to solve the heat
equation on the circle. This is a relatively new method for solving PDEs
on surfaces which are embedded in Rn. It is often used as an alternative
to solving PDEs via triangulation of the given surface. The closest point
method works by creating a “computational band” around the surface that
is one dimension higher than the surface in consideration. We are then able
to apply classical numerical techniques that hold in a Cartesian coordinate
system.

4.1 Outline of the Method

We will now outline the closest point method and explain the importance of
each component of the process. We will assume that we are given a PDE
with initial data, u0, that is defined on a closed surface, S, in Rn which
is of co-dimension one. In particular, we require that S be closed so that
it partitions Rn into an interior and an exterior. We will now proceed to
present the closest point method.

1. Begin by constructing a function that differentiates between the interior



and exterior of S. Define a function, φ(x), on S with the following
properties:

φ(x) =


d(x, ∂S) if x is in the interior of S

0 if x is on S
−d(x, ∂S) if x is in the exterior of S

where d(x, ∂S)1 denotes the distance between x and the closest point
on the surface S. We call the function φ(x) a signed distance function.
Intuitively, the signed distance function determines how close a point in
Rn is to the surface S, along with whether the point is inside, outside,
or on the surface. An important point to note is that S is the zero level
set of the signed distance function.

2. Next, construct a “computational band”, Ωc, around S which is defined
as follows:

Ωc = {x ∈ Rn : |φ(x)| ≤ c}.
Geometrically, Ωc is an n–dimensional band around S of width 2c.
This will be the band that we do our computations in. Notice that
the computational band extends the surface to a region that is one
dimension higher than S.

3. Now we proceed by extending the initial data off the surface S in the
computational domain Ωc. We extend the initial data, u0, off the sur-
face by requiring that it be constant normal to S. In practice, this is
done by requiring:

∇u0 · ∇φ = 0

for all points in the domain Ωc.

4. Now, every point of the computational domain has an associated value.
Proceed by using the typical numerical techniques for solving the PDE
in question. This can be done since the problem is now in n–dimensional
Euclidean space where there is a Cartesian coordinate system. Make
sure to re-extend the data off the surface S at every time step.

The closest point method can be applied in a multitude of circumstances.
Indeed, it has been demonstrated to work in cases where the PDE in con-
sideration has high-order derivatives as in [5], and even when a closed-form

1The symbol ∂ means boundary.



signed distance function is not known as in [7]. The appeal of the method is
that PDEs which are posed on surfaces can be solved using typical numerical
techniques in a Cartesian coordinate system. We are now ready to apply the
closest point method to the heat equation on the unit circle.

4.2 The Heat Equation on the Unit Circle

We will apply the closest point method to the heat equation on the unit circle
so that we can establish the computational problem that will be solved. The
details of the computational techniques that we use are left for section 5.

We are interested in solving (4)-(5), hence we will use u(θ, 0) = sin θ as
our initial data. We will now proceed to apply each step of the closest point
method to the problem at hand.

1. Define the function, ψ(x, y), as:

ψ(x, y) =
√
x2 + y2 − 1. (6)

It is clear that ψ(x, y) satisfies the properties of a signed distance func-
tion for the unit circle. It is interesting to note that ψ(x, y) is very
similar in nature to the Euclidean metric on Rn – this, however, is
not always the case. For surfaces more complex than the circle, the
corresponding signed distance functions are also more complex than
ψ(x, y).

2. We will use the following computational domain:

Ω 1
10

= {x ∈ R2 : |ψ(x, y)| < 1/10}. (7)

This is the same computational domain that was used in [1], [4], and
[5]. The author of [4] justifies in great detail the choice of this domain
based on curvature properties of the circle. We will not reproduce those
arguments here.

3. Now we will explain how to use the geometry of the circle to extend
the initial function, u(θ, 0) = sin θ, off the surface. Observe that given
a point (x0, y0) ∈ R2, it lies on the line

y =
y0

x0

x.



Moreover, since the line prescribed above passes through the origin, it
is perpendicular to the unit circle at the point of their intersection. We
will now analytically solve for the intersection of the line y = y0

x0
x with

the circle
√
x2 + y2 = 1. Let (xc, yc) denote the point of intersection,

then:

xc =

√
1

1 + ( y0
x0

)2
, (8)

and

yc =

√
1

1 + (x0

y0
)2
. (9)

In practice, we use equations (8)–(9) to extend the initial data off the
unit circle. We also use (8)–(9) in our numerical calculations when the
numerical scheme requires points outside of the computational domain.

4. We will leave our discussion of the numerical techniques that we use
for section 5.

Now, the problem of solving the heat equation on the unit circle with
u(θ, 0) = sin θ is posed in terms of subset of R2 on which we can apply typical
numerical techniques. Next, we discuss the assumptions of the closest point
method.

4.3 Assumptions

In using the Closest Point Method, there are several assumptions that are
made. We list them explicitly below.

• We assume that the surface that we are dealing with is smooth and
closed in Rn for some n ∈ Z+. As discussed in section 4.1, we require
that our given surface be closed so that it partitions Rn into an interior
and exterior. In our case we are dealing with the unit circle which is
clearly both smooth and closed in R2.

• We assume that there exists a function2, φ(x), as defined in step 1 of
section 4.1. As we have shown, ψ(x, y) is such a function for the unit
circle.

2It has recently been shown that this function need not have a closed form, see ??.



• When extending initial data off of the zero level set of φ(x) we assume
that the initial conditions are constant along normals to the surface.
This ensures that the initial data is defined in the entire computational
band while keeping the data on the surface unchanged. In our case,
re-extending the data off of the unit circle at each step causes the heat
equation to disperse along each circular level set in Ωc. Thus, the
assumption that data is constant normal to the surface enables us to
solve the heat equation in a circular region.

• We will also assume that

|φ(x)| ≤ c <
1

κmax
, (10)

where κmax is the maximum of the principle curvatures along the sur-
face. This restriction ensures that ∇φ is well-defined, for a proof of
this fact see [4].

Next, we will present the numerical methods that we use to solve the heat
equation on the domain Ω 1

10
. We now turn our attention to the computational

implementation of the heat equation on the unit circle.

5 Computational Implementation

As mentioned in step (4) of the closest point method presented in section
4.1, after posing our initial value problem on the computational domain Ω 1

10
,

we can apply classical numerical techniques that apply in the Cartesian co-
ordinate system. This is done in section 5.1. It should also be noted that
the problem that we wish to solve is posed in terms of polar coordinates,
whereas the numerical method that we develop is one that applies in Carte-
sian coordinates. In practice, we resolve this problem computationally which
we discuss in section 5.2, along with the implementation of our numerical
techniques in MATLAB.

5.1 Numerical Solution of the Heat Equation in Ω 1
10

We begin by discretizing (4)–(5) in terms of familiar finite difference for-
mulas. For simplicity, we will avoid using techniques that involve multiple
spacial steps since the geometry of the domain makes it cumbersome to apply



boundary conditions in these cases. We use a first order forward time differ-
ence for the time derivative, and a second order centered difference for both
spacial variables. For the purposes of analysis, we will employ the notation
uni,j = u(xi, yj, tn). In terms of this notation, we discretize the time derivative
using a first order forward time difference as follows:

ut ≈
un+1
i,j − uni,j

∆t
(11)

Next, we discretize each of the spacial derivatives using a second order cen-
tered difference which yields:

uxx ≈
ui+1,j − 2uni,j + uni−1,j

(∆x)2

and

uyy ≈
ui,j+1 − 2uni,j + uni,j−1

(∆y)2
.

Combining the discretizations of uxx and uyy presented above, we get the
following second order centered difference formula for the Laplacian in R2:

∆u ≈
ui+1,j − 2uni,j + uni−1,j

(∆x)2
+
ui,j+1 − 2uni,j + uni,j−1

(∆y)2
. (12)

Combining (11) and (12), we arrive at the following discretization of the heat
equation:

un+1
i,j − uni,j

∆t
= κ

[
ui+1,j − 2uni,j + uni−1,j

(∆x)2
+
ui,j+1 − 2uni,j + uni,j−1

(∆y)2

]
, (13)

where κ is the heat diffusion constant which measures how fast heat dissi-
pates. We now isolate un+1

i,j in (13) which yields:

un+1
i,j = uni,j − κ∆t

[
ui+1,j − 2uni,j + uni−1,j

(∆x)2
+
ui,j+1 − 2uni,j + uni,j−1

(∆y)2

]
. (14)

Equation (14) gives us an explicit method for approximating u(x, y, t). We
now turn our attention to explaining the implementation of this method in
MATLAB.



5.2 Computer Implementation

We will now discuss the implementation of the numerical scheme stated above
in MATLAB. We use an n× n dimensional matrix array to represent a dis-
cretization of the square in which our computational domain Ω 1

10
is inscribed.

Next, we define a an n × n matrix R which contains the values
√
x2 + y2,

where x and y represent the vertical and horizontal components of data points
in the computational domain. Thus, R defines a discretized metric on the
computational domain. The signed distance function for the circle is readily
obtained from R by simply subtracting 1 from each entry.

Next, we define a matrix Z1 in which we store the initial values of the
function u(θ, 0) = sin θ. Notice that our domain has a Cartesian structure,
whereas our initial condition is in terms of polar coordinates. We resolve
this by noting θ = arctan(y/x). Thus, we evaluate sin[arctan(y/x)] in place
of sin θ. In practice, this method of evaluation in MATLAB leads to a singu-
larity at x = 0 despite the fact that arctan(∞) = π/2. As we will see later,
this leads to problems in the numerical implementation of our method.

After defining the initial conditions in Z1, we evaluate 14 using the values
of Z1. We apply the boundary conditions by finding the point in Z1 that
has the closest x value to (8) and the closest y value to (9). The results are
then stored in a second matrix. With every addition time step, we repeat
this process, extending the data off the unit circle to calculate boundary con-
ditions.

We present our data in two ways: firstly as a 3-D plot of the heat equation
on the computational band, and secondly as a plot of the average relative
point-wise errors at each time step. The point-wise error is computed with
respect to the analytic solution given by equation (3). By means of these two
methods, we analyze our data in the next section. The 3-D plot allows us to
heuristically understand the solution, while the average relative point-wise
error gives us a sense of how accurate our solution is.

6 Analysis of Results

We will begin this section by presenting a result other than the case u(θ, 0) =
sin θ. Unfortunately, in the case that we will present, we do not have an
analytic solution, hence we will analyze the result heuristically. Despite the
fact that our analysis of the figures will be heuristic, it will become important



when it comes time to examine the case u(θ, 0) = sin θ on the unit circle.
Section 6.1 will demonstrate that our method produces results that agree with
our intuition. Following this, in section 6.2 we will investigate the numerical
solution of (4)–(5). We will then compare the behavior of solutions found in
section 6.1 to those found in section 6.2.

6.1 Heuristic Results for Heat Diffusion on a Circle

In addition to giving us an intuition for how the heat equation behaves on
the unit circle, considering the example that follows will aide us in isolating
a problem that arose in the numerical solution of (4)–(5).

During the course of this project, we tested our diffusion method with
several different initial functions in addition to u2(θ, 0) = sin(θ). Most no-
tably, we also considered the initial distribution u2(θ, 0) = | sin θ| which is
shown in figure 3.

Figure 3: Initial distribution of u2(θ, 0) = | sin θ|

We observe that the numerical solution of u2(θ, 0) = | sin θ| as presented
in figure 4 is well behaved under the given conditions. Indeed, u2(θ, t) seems
to converge to some value in the range (.4, .6) for large values of t - the



Figure 4: Distribution of heat at t ≈ 1.5 where u2(θ, 0) = | sin θ|.

picture presented here is t ≈ 1.5. Since | sin θ| is a symmetric and continu-
ous function, we expect that the restriction of the heat equation will cause
the heat distribution to converge to some value near the the midpoint of
[min| sin θ|,max| sin θ|] = [0, 1]. Also notice that the solution at t ≈ 1.5 is
quite smooth with no irregular dips.



6.2 Numerical Solution of u(θ, 0) = sin θ

Now we will turn our attention to analyzing the case u(θ, 0) = sin θ. Recall
that the initial distribution u(θ, 0) = sin θ is represented by the plot in figure
1.

Using our program, we subjected the above heat distribution to the heat
equation by means of the closest point method. Figure 5 shows our numerical
solution of u(θ, t) at t ≈ .1. Notice that there is a slight dip that forms where
the maxima and minima of the function should occur. Figure 7, which is a
plot of u(θ, t) at time t ≈ .3, demonstrates the dip becomes more pronounced
with each time step.

Figure 5: The solution u(θ, t) at t ≈ .01.

Figure 6: The solution u(θ, t) at t ≈ .3.

In order to analyze this problem more carefully, we construct a plot of the
average point–wise relative error for each time step up to t ≈ .3. We do so



by comparing our numerical results to the actual solution u(θ, t) = e−t sin θ.
This will give us a sense for how far off our solution is on average with each
time step. In addition, we will plot the maximum point-wise relative error
of each time step. This will tell us the greatest magnitude of our deviation
from the exact solution.
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Figure 7: The solution u(θ, t) at t ≈ .3.

Notice that the average point-wise error grows quite rapidly, reaching a
value of .25 at t ≈ .3. This tells us that either our method is not accurate,
or the dip in the solution is causing a catastrophic error, or perhaps both.
Given our visual representation of the solution in figure 7 it is clear that
the dip in the solution contributes significantly to the error. The plot of
maximum relative error, which we assume to be occurring at x = 0, tends
to indicate that there is an initial transient period during which there is
a large gap between the actual solution and the numerical solution. The
maximum relative error tends to level off after the initial transient period,
with a few occasional spikes. This indicates that the parts of the solution
bordering the gap do not diffuse into the gap over time. This indicates
that there may be a problem in the implementation of the algorithm. We
showed, however, in the previous section that our algorithm works for the case
u(θ, 0) = | sin θ|. Which is very similar in nature. Another possibility is that



there is a problem with the initiation of the initial conditions. In particular,
the use of arctan[(y/x)] may create a singularity at x = 0. This is the region
that seems to be effected the most, so this is a plausible explanation.

7 Conclusion

In this paper we explored the closest point method for numerically solving
PDEs on various closed surfaces. In particular we were interested in solving:

ut = uθθ, t ≥ 0, 0 ≤ θ ≤ 2π

u(θ, 0) = sin θ 0 ≤ θ ≤ 2π

on the unit circle. We did this by extending the initial data into a compu-
tational domain where we in turn solved the problem using a forward time
difference method along with a second order centered difference method for
both spacial variables. This resulted in an explicit scheme which we solved
in MATLAB.

Our approach seemed to work quite well for evolving the initial condition
u2(θ, 0) = | sin θ|, but did not work for numerically solving the the problem
of interest – evolving u(θ, 0) = sin θ. We came to the conclusion that this
was either because of an error setting the initial condition - possibly due to
problems with arctan(y/x) at x = 0, or due to a problem in the implemen-
tation of the method. It should be noted, however, that our implementation
worked well for the u2(θ, 0).

7.1 Future Work

For future work, we would like to pinpoint the error that caused the dip in
our numerical simulations. In addition, we would like to investigate using the
closest point method to solve the heat/diffusion equation on domains other
than the circle. It is, for example, feasible to solve the diffusion equation on
a surface such as torus.
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