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PDEs in Math 164

In Math 164 we’ve worked with implicit/explicit methods for
solving PDEs in Rn.

We’ve also considered PDEs on other domains which are
subsets of R2 (e.g., the wave equation on a circle).

Is it possible to solve PDEs on more complex surfaces?
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PDEs on surfaces: Why we care

Problems often arise in which PDEs must be solved on
complex surfaces.

Biological systems (solution of predator-prey on surfaces)
Image Processing (generation of textures)
Medical imaging (brain scans)
Fluid dynamics (flows and solidification on surfaces)
David Coat’s problem (terrain decay)

It is an interdisciplinary problem that involves a great deal of
computer science, graphics, and math.
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Classical Approaches
CP Method Explained
Summary

An initial approach: Triangulation

The method of triangulation

Approximate the given surface by triangulating.

Solve the given PDE on each triangle

Piece the solutions together

If this is not good enough, then use more triangles!

Issues with triangulation

We have to use a lot of triangles! (∼ 106)

It’s hard to splice solutions together.

Convergence of numerical schemes on triangulated grids are
not understood as well as with Cartesian grids.
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An initial approach: Parametrization

Solving PDEs via parameterization

Parameterize the given surface

Conformally map it to a cartesian grid

Solve the problem in Cartesian coordinates!

Issues with this approach

Some surfaces are hard to parametrize!

Finding a good conformal map can be quite challenging!

Is there another approach to transforming our problem to cartesian
coordinates?
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Classical Approaches
CP Method Explained
Summary

The Closest Point Method gives us an easy and efficient way
of projecting the problem into Cartesian coordinates, thereby
allowing us to solve it with classical numerical schemes.

We don’t need triangulations!

We don’t need conformal mappings!

We will assume that we are working with a manifold of
codimension-one that is embedded in Rn.

The Closest Point Method utilizes the geometry of the surface.
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Signed Distance Function

Definition (Signed Distance Function)

Let S be a closed embedded codimension-one manifold in Rn. A
function φ : Rn → R is a signed distance function if φ < 0 inside
S , and φ > 0 outside S .

Example

The signed distance function for the circle is given by:

φ(x , y) =
√

x2 + y2 − 1.

The signed distance function for the torus is given by:

φ(x , y , z) =

√
z2 +

√
x2 + y2 − R − r
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Computational Domain

We need to defin a domain on which to do our computations.

Let c be a constant such that:

|φ(x)| ≤ c <
1

κmax

We will define our computational domain as the following
band:

Ωc = {x : |φ(x)| ≤ c}.

The set Ωc = {x : |φ(x)| = 0} is called the zero level set of
φ(x), and defines the manifold.
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The Projection Matrix

The Projection Matrix

We need some way of getting from the set Ωc to Rn.

We do this by projecting Ωc into Rn.

We use the following matrix for this projection:

P = I −∇φ⊗∇φ.

where “⊗ ” denotes the Kronecker product.

This matrix projects the system into Rn!
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Extension of initial data

Now we need a way of extending the intial data off of the
surface.
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The Closest Point Method

The Closest Point Method

1 Compute the signed distance function (some notion of
distance on the surface).

2 Choose the computational domain of the form
Ωc = x : |φ(x)| ≤ c .

3 Derive the Eulerian representation of the surface PDE.

4 Extend the data off the surface by requiring ∇u0 · ∇φ = 0 for
x ∈ Ωc

5 Compute the Eulerian representation of the surface PDE using
standard finite differences on a Cartesian mesh in the
computational domain.
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standard finite differences on a Cartesian mesh in the
computational domain.
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Benefits of the CP Method

We don’t need a conformal map into Rn or a triangulation of
the surface.

We don’t need artificial boundry conditions, nor do we
introduce artificial singularities.

This approach allows us to discretize differential operators in
Euclidean space.

We can use our typical numerical schemes from Math 164!
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Future Work

In the future we hope to be able to:

Model evolving surfaces (e.g., motion by mean curvature)
Solve a PDE on the evolving surface (e.g.,
heat/reaction-diffusion equations)
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