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1 Introduction

This paper examines the shape and stretching of an extensible jump rope in motion.
Specifically, we investigate general trends between the amount of stretch at a given point
on the jump rope and the location of this point relative to the axis of rotation. We are
also concerned with how the behavior of ropes with non-constant mass density differs
from those with constant mass densities. In [1] the shape of an inextensible rotating
jump rope is considered. Although the shape may appear similar to a parabola or
hyperbolic cosine, there is actually no simple closed form description. [1] tackles this
problem by modeling the jump rope using the general wave equation and then solving
the resulting equations numerically. This paper follows a similar path to determine
the shape and stretching of an elastic jump rope. In order to model the shape and
stretching of a rapidly rotating jump rope we use the general wave equation and the
resulting system of second order differential equations is solved numerically using the
software Mathematica. A shooting method is used to find solutions which satisfy the
boundary conditions imposed by the fixed ends of the jump rope. The solutions are
graphed to illustrate the shapes of various elastic jump ropes and we then examine the
stretching of the jump ropes at different points.

2 Mathematical Model

The mathematical model of the jump rope is created from the general wave equation

ρ(s)xtt(s, t) = Ts(s, t) + a(s, t)ρ(s) (1)

which describes the motion and position of any one-dimensional elastic material located
in three dimensions. Here

x(s, t) =

 x(s, t)
y(s, t)
z(s, t)


is a parametric description of the center of the rope. In order to illustrate the physical
significance of the terms in (1), a small segment of the curve being described is shown
in Figure 1. The vector T(s, t) represents the force experienced by the segment to the
left of s due to the segment to the right of s; it is always directed tangent to the curve
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because of the flexible nature of a rope. We can relate T(s, t) to the tension, T (s, t),
in the rope by

T(s, t) = T (s, t)
xs

||xs||
.

The vector a(s, t)ρ(s) is associated with the sum of all the body forces acting on a
given section of the curve where ρ(s) is the mass density of the jump rope.

Figure 1: A depiction of a rope described by the general wave equation taken from [1].

Before modifying this equation to model the shape of the elastic jump rope, several
assumptions about the rope must be made. Using the general wave equation neces-
sitates the assumption that the jump rope is one dimensional. For the model this is
appropriate because the diameter of the jump rope is insignificant compared to its
length. Additionally, we will assume that the centripetal force dominates and that
effects of gravity and air-resistance can be ignored. Because we are interested in suf-
ficiently high rotational velocities, the centripetal force will be much greater than the
force of gravity. Similarly, since a jump rope has a very small surface area the effect of
air-resistance is negligible compared to the dominating force. We also assume that the
jump rope behaves in a linearly elastic manner and is rotated at a constant angular
velocity, ω.

Because we are primarily interested in the behavior of elastic jump ropes within
a certain range of rotational velocities and mass densities these assumptions are ap-
propriate for the model. It is important to note that for insufficiently high rates of
rotation, the effect of gravity cannot be ignored and the model will no longer apply.
On the other hand, extremely high rotational velocities and high mass densities result
in a large amount of body forces acting on the jump rope. In these cases the jump
rope will undergo a great deal of strain and it might be unreasonable to assume that
the material will continue to behave elastically.

Since the effect of gravity is ignored in our model, the shape of the jump rope will
be static throughout its rotation. Therefore we can consider the jump rope in the
rotating frame of reference to obtain a time independent model. Let the ends of the
jump rope be fixed at (0, 0) and (H, 0) in the x− y plane and let the x-axis be the axis

2



of rotation. In the rotating frame of reference, the observed centrifugal force acting on
a short segment of rope with length ∆s is ω2y(s)ρ(s)∆ŝj. In a linearly elastic material,
the tension can be expressed as

T (s, t) = k(||xs|| − 1),

where k can be thought of as a spring constant. With these relations (1) becomes

0 =
∂

∂s

(
k(||xs|| − 1)xs

||xs||

)
+ ω2y(s)ρ(s)̂j,

providing a description of the rotating elastic jump rope. For a jump rope with length
L, the system of equations to be solved is

0 =
∂

∂s

(
k(||xs|| − 1)xs

||xs||

)
,

0 =
∂

∂s

(
k(||xs|| − 1)ys

||xs||

)
+ ω2y(s)ρ(s),

subject to boundary conditions x(0) = 0, x(L) = H, y(0) = 0, and y(L) = 0.

3 Solution Technique

Since there is no closed form solution to the system of differential equations that model
the jump rope, the problem must be approached numerically. We want to use a shoot-
ing method to determine the solution to this boundary value problem, but must first
determine approximate initial conditions where we can begin the method. In order to
obtain these values, we treat the problem as an initial value problem. Using the soft-
ware, Mathematica, we write the method GraphSolution which takes in user specified
values for the initial conditions and then returns a plot of the solution for these param-
eters. The built in Manipulate function allows us to visually determine the effects of
modifying the initial conditions and obtain solutions to the differential equations that
approximate solutions satisfying the boundary conditions.

Not all initial values are appropriate to consider for this problem. The functions
ys(s) and xs(s) are related to the amount of stretching of the jump rope at point s by
the equation

Stretch(s) = ||xs|| − 1 =
√
y2

s(s) + x2
s(s)− 1. (2)

Therefore only initial values of ys and xs that result in Stretch(0) > 0 provide a
valid physical description of this problem. In order to more easily incorporate this
constraint into the solution method, the initial condition y′(0) is not directly modified
in the method GraphSolution, but varied through the parameter Stretch(0) related to
y′(0) and x′(0) by (2). This graphical approximation technique easily allows for the
discovery of different modes of a jump rope.

The graphically determined initial conditions are then used as the starting values
for a shooting method to solve the boundary value problem. This is completed using
Mathematica’s NDSolve function and specifying the shooting method option. This
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technique is capable of finding solutions for both jump ropes with constant mass density
and those with mass densities given by a continuous function.

Although Mathematica’s shooting method takes a significant amount of time to
compute the non-constant case, the nature of the problem that concerns us does not
necessitate a large number of trials and therefore algorithm efficiency is not a priority.
When L = 5 and H = 1, the solutions calculated using this method were found to
deviate from the boundary conditions by approximately 10−6 or less. This accuracy
declines, however, as the complexity of the problem is increased by considering non-
constant mass densities or higher modes of the jump rope.

4 Results
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Figure 2: On the left we compare the shape of an elastic jump rope with k = 10 (solid)
and an inextensible jump rope (dotted). Both jump ropes have ρ(s) = 1, ω = 1, and
L = 5. Two modes for both cases are shown. On the right we see how the shape of
the jump rope varies with k while the other parameters remain the same as mentioned
above. The solid plots in blue, green, red, and cyan correspond to k = 5, k = 10, k = 20,
and k = 100 respectively. The inextensible jump rope (dotted) is again shown for
comparison.

4.1 Jump ropes with Constant Mass Density

Using the technique above, we calculate the curve of the jump rope for different pa-
rameters. There are several intuitive relationships between the parameters and the
jump rope shape that our solutions support. First we can compare the shape of the
linearly elastic jump rope with the inextensible jump rope in the left plot in Figure 2.
The results of the model coincide with our visual expectation of an elastic jump rope.
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Additionally we can examine how increasing angular velocity or mass density affects
the shape. Although not pictured here, the model predicts that the amplitude of the
jump rope will increase as these parameters are increased, as expected. Finally, we
can examine how the “spring constant” and the shape are related. This data is shown
in the right plot in Figure 2. As the spring constant increases and the rope becomes
stiffer, the behavior of the rope approaches the behavior of the inextensible case.

Now we use the model to examine the extent of stretching at each point on the jump
rope. Recall that once we obtain the equations, x(s) and y(s), which describe the shape
of the jump rope, the stretching of the jump rope at point s is given by Equation (2).
Two modes of a jump rope with constant mass density and colored according to the
amount of stretching at a given point are shown in Figure 3. Examining these two plots
illustrates several aspects of how stretching occurs on the jump rope. First, notice that
in both configurations the maximum amount of stretch occurs at points closest to the
axis of rotation. Conversely, the points of least amount of stretching occur at peaks
of the jump rope shape. For the constant density case we can also observe that all
points on a given jump rope shape which are the same vertical distance away from the
axis of rotation will undergo the same amount of stretching. This, however, is not the
case for jump ropes of non-constant mass density. Comparing the two graphs in Figure
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Figure 3: On the left the first mode of an elastic jump rope with k = 10, ω = 1, ρ(s) = 1,
and L = 5 is shown. The red areas indicate the highest amount of stretch (approxi-
mately 0.42) while the purple areas indicate the smallest amount of stretch (approx-
imately 0.03). The right plot shows the second mode of the same jump rope colored
using the same scale.

3 also allows us to see that the amount of maximum stretch for the two jump rope
modes is different. The first mode, where the jump rope only meets the axis rotation
at the endpoints, has a larger maximum stretch value than the second mode of the jump
rope. We see a continuation of this trend if modes 3 and 4 are examined. Table 1 shows
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the maximum and minimum stretch values for all four modes and indicates that less
stretching occurs for jump rope configurations that cross the axis of rotation a greater
number of times. Intuitively this makes sense because in these configurations the rope
is generally closer to the center of rotation and therefore the apparent centrifugal forces
are smaller.

Table 1: Stretch Values for Different Jump Rope Modes
Mode Number Minimum Stretch Maximum Stretch

1 0.0297 0.4197
2 0.0070 0.0831
3 0.0031 0.0356
4 0.0017 0.0197

4.2 Jump ropes with Non-constant Mass Density
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Figure 4: These plots correspond to a jump rope with ρ(s) = 1.1 + sin(4πs), ω = 1, k =
10, and L = 5. On the left the shape of the jump rope is colored according to the
mass density at a given point (red corresponds to ρ(s) = 0.1, yellow to ρ(s) = 2.1. The
middle plot shows the same jump rope colored according to the amount of stretch at
a given point (red corresponds to stretch(s) approximately 0.5 and purple corresponds
to stretch(s) approximately 0.03. On the right, the x axis is plotted vs. the amount of
stretch in the jump rope.

Now non constant mass density cases are considered. Figure 4 depicts a jump rope
with a mass density given by

ρ(s) = 1.1 + sin(4πs).
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As seen previously for the constant mass density jump rope, the points of greatest
stretching occur at places closest to the axis of rotation and the points of least stretching
occur at points farthest from the axis. This example highlights that for jump ropes
with non-constant mass density, two points on the jump rope that are the same distance
away from the axis of rotation will not necessarily be stretched the same amount, as
was the case for the constant mass density jump rope. We calculate that for s1 = 0
and s2 = L, y(s1) = y(s2) = 0; however, stretch(s1) = 0.470 and stretch(s2) = 0.487.
This behavior is even more apparent in the following example. A jump rope with
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Figure 5: These plots correspond to a jump rope with ρ(s) = 2e
2
3 s, ω = 1, k = 10, and

L = 5. On the left the shape of the jump rope is colored according to the mass density
at a given point (red corresponds to ρ(s) = 2, yellow to ρ(s) = 56. The middle plot
shows the same jump rope colored according to the amount of stretch at a given point
(red corresponds to stretch(s) approximately 0.3 and purple corresponds to stretch(s)
approximately 0.01. On the right, the x axis is plotted vs. the amount of stretch in
the jump rope.

ρ(s) = 2e
2
3 s

is shown in Figure 5. It is clear that the right endpoint on the axis of rotation is
undergoing a much greater amount of stretch than the left endpoint. Incorporating non-
constant mass densities creates a much more complicated stretching pattern. Even so,
the maximum amount of stretching always occurs at some point on the axis of rotation.

5 Conclusion

Our model of a rotating elastic jump rope succeeding in providing an intuitively correct
image for varying values of k and ω. It also provided a means of determining the
amount of stretching at a given point on the jump rope. By considering the stretching
of a jump rope with constant mass density we were able to determine that the most
stretching occurs at points on the axis of rotation and the least stretching occurs at
points farthest away. Also, jump rope configurations that cross the axis of rotation at
more points experience less stretching. The non-constant mass density case created a
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less predictable stretching pattern, although the maximum amount of stretching still
occurred at points on the axis of rotation.
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