Modeling an Elastic Jump Rope

Melissa Strait Harvey Mudd College

Math 164

5/1/08

Questions about an Elastic Jump Rope

• Are there any unexpected differences from the inextrisible case?

• Where along the rope does the most of the stretching occur?

• How does a variable mass density affect the shape and stretching?

Mathematical Model

Fig. 1 Free-body diagram of a small segment of the curve. The dashed curve is $\mathbf{x}(s,t)$, the centerline of the string, rope, or chain.

General Wave Equation

This equation describes the motion of a one-dimensional object.

$$\rho(s)\mathbf{x}_{tt}(s,t) = \mathbf{T}_s(s,t) + \mathbf{a}(s,t)\rho(s)$$

Mathematical Model

For our elastic jumprope:

- The shape is static in the rotating plane
- The material is linearly elastic
- The centrifugal force dominates

Equations of Motion for the Jumprope

From the general wave equation we get the BVP

$$0 = \frac{\partial}{\partial s} \left(\frac{k \mathbf{x}_s(||\mathbf{x}_s|| - 1)}{||\mathbf{x}_s||} \right) - \omega^2 \rho(s) y(s) \hat{\mathbf{j}}$$

$$x(0) = y(0) = 0, x(L) = H, y(L) = 0.$$

Solving the BVP

- Approximate the solution graphically by varying initial conditions
- Use these approximate initial conditions in a shooting method

Basic Results

Comparison to Inextensible Jumprope

Additional Observations

- Increasing angular velocity increases the stretching of the jumprope
- Jumpropes with higher mass density stretch more
- Increasing the "spring constant" makes the jumprope behave more like the inextensible case

The Stretching of the Jumprope

Constant ρ

The Stretching of the Jumprope

The Stretching of the Jumprope

Jump Rope Shapes

