Scott Triglia
Math 164 Final Report
4.18.08

Exploring evolution using genetic
algorithms

Introduction

One of the trickiest things about explaining th@aept of evolution to the average person is conngthem it
actually works. Since, by its nature, evolutiom@ a particularly obvious or quick process, igiste natural for the
process to be hard to understand, or even unbbligvapon first encounter. The concept of ordengifrom
disorder, or quality emerging from mediocrity isth&o stomach when it is attributed to little mdhan time and a
moderately effective selection process.

Given the current debates that are ongoing abaltigon in the public sphere, | am interested irysvthat scientists
can work to make the process less mysterious tatbeage person. I'm of the firm belief that thisra whole sector
of the American population that simply needs tosmapelling evidence that evolution happens, befioed eyes, to
open their minds to the possibility.

For these reasons, my goal with this project has hbe create a very simple model of evolution, lotehow that it
works, and to investigate some deeper questionst aisdehavior.

Construction of the model

References
Before discussing the actual specifics of the mokebriefly mention what information | used tedde on the
details of the model. Feel free to skip to the re=dtion if the specific sources | used are ofmerest to you.

To construct the model, | relied on a few papers.

Modelling Crossover-Induced Linkage in Genetic Altuns (2001) by Adam Priigel-Bennett caused mentwsicler
the differences between various models of crossevgich will be discussed later.

For mutation, | chose to use a (fairly standardja¢@robability mutation for each bit of informatian the genes.

For the overall course of the algorithm, | usedlihsic outline given by comp.ai.genetic Usenet graiuhttp://www.-
fags.org/faqs/ai-fag/genetic/part2/.

Genes

The first essential component of any evolutionandei is the genome of each Creature. For simplitithecided to
make my creatures Math Creatures, whose genomes wonsist of various arithmetic tables. In the @nchose to
have three genes, an addition, multiplication amudlulus gene(or table) for positive integers 1-For the sake of
the algorithm, these tables are each treatediasaf LOO integers.

2| finalreport.nb

The goal of our Math Creatures will be to attaia trerfect addition, multiplication and modulus genEkhis will be
defined, naturally enough, as the set of genesewertables in question are completely accurate.

For example, the following is a small 1x3 addittable, and a sample gene, which has an incorretirbagow.

Actual Table = {{2, 3, 4}, {3, 4, 5}, {4, 5, 6}} //Gid
Sanpl eGene = {{2, 3, 4}, {3, 4, 5}, {0, 0, 0}} // Gid

2 3 4
345
456

w
»
(¢)]

Now that we know the makeup of the genes in outhMzreatures, we must determine a metric for catinigehow
good a given creature's genes are.

Fitness

For simplicity's sake, the fithess of a creaturedé&termined by the sum of squared errors from the
addition/multiplication/modulus tables. As an exdmmonsider the following (shortened) additionl¢éaland it's
accompanying fitness. It is important to rememibat under this metric, larger values mean a geneise. In
essence this is a "badness" metric.

Sanmpl eGene = {{2, 3, 4}, {3, 4, 5}, {0, 0, 0}};
Actual Table = {{2, 3, 4}, {3, 4, 5}, {4, 5, 6}};
CetFitness[S , A] := Mdul e[{sum},

sum= 0;

Forp[i =1, i < 3, i =i +1,

For[j =1, <3, =] +1,

sum = sum+ (S[[i, j11-A[[l, jI11D"2;11;

Ret ur n[sum]]

Get Fi t ness [Sanpl eGene, Act ual Tabl e]

7

The program also has a linear metric built in, $ingpmming the absolute error from ideal of eadh E®r the same
example, this metric would produce the followingdiness" rating.

GetFitnessLinear [S, A] := Mdul e[{sum},
sum= 0;
Forp[i =1, i <3, i =i +1,
For[j =1, <3, =] +1,
sum = sum+ Abs [S[[i, j1]1-A[li, j111;11;
Ret urn[sum]
Get Fi t nessLi near [Sanpl eGene, Actual Tabl e]

15

finalreport.nb |3

Selection

The final details is deciding how to select thetlmrganisms from a population. We have our fitmesgric, so the
surviving organisms are determined by simply pigkthe top 100 creatures, with each choice havingeso
probability of picking randomly, instead of the besganism available. This probability is refertedelsewhere in
this paper and the code as NSProb.

We now have a representation for a creature, auneas fithess and a way to select the top orgasidithat remains
is to determine how to reproduce.

Reproduction M odel

The model for reproduction is based in a large p#irof the paper by Adam Priigel-Bennett mentioimethe Refer-
ences section. The two main parts of the modetlac&ling how to combine creatures and how to craatew child
from two creatures.

The first decision, about combining creatures, d@ase naively for now. | simply take creatures indam pairs and
create two children. Doing this 4 times per creatasults in a population 4x larger. Then you aahtbe top quarter
of the population, restoring our original numbercodatures, ready for the next generation.

For creating a child, there are two consideratidin first is how to combine the parents' genes tiné child, and the
second is how to mutate the child slightly. Forssmver, | implemented two-point crossover, as dised by Prigel-
Bennett. This means each gene of the child wilk@iona third of one parent's gene, and two thifdtbe other's. The
following diagram illustrates this process(thankikipedia!). You can see the parents' gene, alonly twio crossover
points. The childrens' genes are then created lifirsgp the parent genes along these lines and pimgpghem back
and forth, creating new genes.

Farent 1
Farent 2

Child 1
Child 2

For mutation, | simply set a probability of eacli @ethe child's gene's increasing by a randonuedetween -1 and
1. This probability is referred to in the code @hid document as MutProb.

Exploring the model

For the program to work correctly, ensure thatMehCreatures folder this file came in is placeectly in you C:\
drive, so that the path to this file is C:\MathQrees\triglia_final_report.nb

Here is a graph of the average final fitness, givarying values of natural selection probabilitydamutation
probability, for 800 generations of Creatures. Mothat the rate at which natural selection makessdoesn't much
affect the final fitness (within the range showm)f the mutation rate significantly does. Becausthis graph, the
default NSProb is set to 0.1 and the default MutRscset to 0.01.

4| finalreport.nb

L = Inport ["C \\ Mat hCreat ures\\ parantsearch.txt", "Tabl e"];
Li st Pl ot 3D[L, AxesLabel - {"Miutation Prob", "Natural Selection Error",
Dat aRange -» {{0.005, 0.2}, {0.005, 0.2}}]

Natural Selection Error
0.2016.10.05

140 =1 U’""U"'”rm'v—rrrn—‘

13.8

Badness|3.6

13.4

Mutation Prob

"Badness" },

The following are the 8 parameters to the gendgjorahm. The first parameter determines which paogis run. For
more information on this parameter, refer to thpeaqulix. The following 5 deal with the length andaraeters of the
simulation. The next three determine whether akdhgenes are considered, and what their relatipeitance is to
fithess. The final parameter determines whetheffithess metric is the squared error as discussethe absolute

error.

This is the fun part! Change the parameters ar@ambwatch the changes. Note that the graph is slgobadness
over time, so we expect it to decrease. A partitplateresting phenomenon is the huge bend ingtlaph after just
20 or so generations where improvement slows shdtmgeems that after the initial creatures akeduhrough a

few generations, there is relatively little geneaticersity left, and so improvement must happerabse of mutation

rather than crossover during the reproductive mece

finalreport.nb |5

programName = "TrackAl |";

nunlrials = ToString[1];

(* The nunber of trials - averaged to produce the graph you see =)
nunGens = ToString[1600]; (* The number of generations to run the world for =)
genRes = ToString[1l0]; (* How many generations between data points =x)
NSProb = ToString[0.17;

(* The probability of natural selection not choosing rationally =)

Mut Prob = ToString[0.011;

(+ The probability of a nutation in a single cell of a creature =)

(* The weights on the three genes x)

add = ToString[O0];

mult = ToString[l];

mod = ToString[0];

fitStr = "Squared";

geneChoice = "Miltiplication";

(* Which gene do you want to track over the sinulations)

(*» Runs the .exe x)

Run[StringJoin["cd C\MthCreatures &% Mat hCreatures.exe ",
programNarme, " ", nunmfrials, " ", numGens, " ", genRes, " ", NSProb, " ",
mit Prob, " ", add, " ", mult, " ", nod, " ", fitStr, " ", geneChoice]l;

(» Reads the output table and graphs it =)

T=Inmport ["C\\MathCreatures\\runData.txt", "Table"];

ListLinePlot [{T[[1]1], T[[2]], T[[31]}, AxesLabel - {"CGeneration Nunber", "Badness"},
Pl ot Range -» Automatic, DataRange - {1, ToExpressi on[nunGens]}]

Badness
20+

15+

10+

I —— GeneratiorNt

500 1000 1500

Another fun thing to view is the average multiptioa gene as you go through the generations oft@res In this
cell, you can view the average creature's mul@pian cell from the same run whose graph is above.

6 | finalreport.nb

(* How cl ose to correct before we highlight it?x)

tol = .5;

Matri xDim = 10;

genlters = Fl oor [ToExpressi on[nunGens] / ToOExpressi on[genRes]];
nunRows (genlters-1) =Matri xDim + 1;

addGene = I nport ["C:\\ Mat hCreat ures\\trackGenes. txt", "Tabl e"1;
Actual =Table[i *j, {i, 1, MatrixDim}, {j, 1, MatrixD m}];
Animate[Gri d[Take[addGene, {z, z + MatrixDi m-1}, MatrixDi m],
Background - Bl ack, ItenStyle -» {Autonmatic, Autonatic,
Fl atten[Tabl e[l f [Abs [Take[addGene, {z, z + Matri xDi m-1}, MatrixDim][[i, j1] -
Actual [[i, j]1]]1 <tol, {i, j}> Geen, {i, j}> Wite],
{i, 1, matrixDim}, {j, 1, MatrixDim}]11}1, {z, 1, nunmRows,
Mat ri xDi my, Ani mati onRunning - Fal se, Defaul tDuration -
10]

finalreport.nb |7

_—DIEEIE]

rid [Take [addGene, {1511, 1510 -+ MatrixDim }, MatrixDim |,
Background - Graylevel [0], ltemStyle - {Automatic, Automatic,
Table [If [Abs[Take [addGene, (FE z$$1, FE z$$1 + MatrixDim - 1}, MatrixDim
,j]-Actual [i,j J] <tol, [{i,j } - Green,
{,j 1} > White], {i, 1, MatrixDim 1, {j, 1, MatrixDim 111

8| finalreport.nb

programNanme = "TrackTwo";

nunlrials = ToString[1];

(* The nunber of trials - averaged to produce the graph you see =)

nunGens ToString[1600]; (* The nunmber of generations to run the world for =)
genResl = ToString[5]; (* How many generations between data points =x)

genRes2 = ToString[10]; (% How many generations between data points =)
NSProbl = ToString[0.1]; (» The probability of natural selection not choosing =)
NSProb2 = ToString[O0.17;

(+ The probability of natural selection not choosing rationally =)

Mut Probl = ToString[0.1];

Mut Prob2 = ToString[0.01];

(* The probability of a nutation in a single cell of a creature =)

(+ The weights on the three genes x)

add = ToString[O0];

mult = ToString[l];

nmod = ToString[O];

fitStrl = "Squared";

fitStr2 = "Squared";

geneChoice = "Miltiplication";

(* Which gene do you want to track over the sinulations)

(* Runs the .exe x)
Run[StringJoin["cd C\MthCreatures &% Mat hCreatures. exe ",

programNanme, " ", nunfrials, " ", numGens, " ", genResl, " ", genRes2,
" " NSProbl, " ", NSProb2, " ", MiutProbl, " ", MuitProb2, " ", add,
S, mlt, " ", mod, " ", fitStrl, " ", fitStr2, " ", geneChoice]l;

(» Reads the output table and graphs it =)

T=I1nport ["C\\ Mat hCreatures\\runData.txt", "Table"];

ListLinePlot [{T[[1]1], T[[2]]1}, AxesLabel - {"Generation Nunber", "Badness"},
Pl ot Range -» Automatic, DataRange - {1, ToExpressi on[nunGens]}]

Badness
70

60
50
40
30F

201

T

500 1000 1500

Generation Number

Appendix - Code Use

The program can be used by calling MathCreaturesagth the following options:

finalreport.nb |9

programName - This can be:

"TrackGenes" - creates a trackGenes.txt file witichtains the average gene at each timestep fageahe
given in geneChoice

"TrackFitness" - creates a runData.txt file whodmtains the best, worst and average fitness atteaestep

"TrackAll" - creates both files listed above

"PlotParams"” - creates paramSearch.txt which shbevfitness after numGens generations for varyaiges
of NSProb and MutProb. This can be viewed by usitegcode shown in the Parame-
ters section of this document.

To run MathCreatures.exe from insiblathematica, use the line
Run[StringJoin["cd C:\MathCreatures && MathCreatsiexe ", arguments]];

where "arguments" is a variable containing all canchline arguments you wish to use. Naturally, gao always
run the exe from the Windows command line if yqurefer.

The other command line options vary based on wbit¢hese programs you want to run.

Tracking Programs

For all of the "Track" options, the remaining opisoare as follows

numTrials - How many populations should the reshétsaveraged over

numGens - How many generations should each siroulatin for

genRes - How many generations between data points

NSProb - What is the probability that natural sttecchooses randomly

MutProb - What is the probability that each celeech gene mutates

add - What is the fithess importance of the addigiene (a floating point number....add, mult andl mmust sum to 1)
mult - What is the fitness importance of the muitigtion gene

mod - What is the fitness importance of the modgleise

fitStr - What type of fitness calculation shouldumed (must be "Linear" or "Squared")

geneChoice - What gene should be tracked for trankG@xt (must be "Addition" "Multiplication" or "Mgulus™)

Plot Parameters

For PlotParams, the arguments are slightly differas follows.

numTrials - How many populations should the reshétsveraged over

numGens - How many generations should each siroulatin for

probRes - How thinly should the search space bigletiv(7 means there will be 7 values for NSProb aridr
MutProb)

add - What is the fithess importance of the addigiene (a floating point number....add, mult andl mmust sum to 1)
mult - What is the fitness importance of the mdiltigtion gene

mod - What is the fitness importance of the modgleise

fitStr - What type of fithess calculation shoulddmed (must be "Linear” or "Squared")

Compar ative Programs

For "TrackTwo", the program will take in two inputs programs and output the two results, for corspa.

numTrials - How many populations should the reshétsveraged over

10| finalreport.nb

numGens - How many generations should each siroulatin for

genResl - How many generations between data points

genRes2 - How many generations between data points

NSProbl - What is the probability that natural ste chooses randomly

NSProb2 - What is the probability that natural ste chooses randomly

MutProbl - What is the probability that each celeach gene mutates

MutProb2 - What is the probability that each celeach gene mutates

add - What is the fithess importance of the addigiene (a floating point number....add, mult andl mmust sum to 1)
mult - What is the fitness importance of the muitigtion gene

mod - What is the fitness importance of the modgleise

fitStrl - What type of fitness calculation shoulkel ised (must be "Linear" or "Squared")

fitStr2 - What type of fitness calculation shoulkel ised (must be "Linear" or "Squared")

geneChoice - What gene should be tracked for trank@xt (must be "Addition" "Multiplication" or "Mtulus")

